Refinar búsqueda
Resultados 1-10 de 40
Cytotoxicity and hormonal activity of glyphosate-based herbicides
2020
Tóth, Gergő | Háhn, Judit | Radó, Júlia | Szalai, Diána A. | Kriszt, Balázs | Szoboszlay, Sándor
Glyphosate-based herbicides (GBHs) are the most widely used pesticides for weed control. In parallel with the renewal of the active ingredient, polyethoxylated POE(15) containing GBHs were banned in the EU in 2016. Since then, co-formulants were changed and numerous GBHs are marketed with different excipients declared as inert substances. In our study, we focused to determine acute and chronic cytotoxicity (by Aliivibrio fischeri assay) and direct hormonal activity (estrogenic and androgenic effects measured by Saccharomyces cerevisiae BLYES/BLYAS strains, respectively) of glyphosate, AMPA, polyethoxylated POE(15) and 13 GBHs from which 11 formulations do not contain polyethoxylated POE(15). Among the pure substances, neither glyphosate nor AMPA had any effects, while polyethoxylated POE(15) exhibited pronounced toxicity and was also estrogenic but not androgenic. Regarding the acute and chronic cytotoxicity and hormonal activity of GBHs, dilution percentages calculated from EC₅₀ values were in the most cases by one or two order of magnitude lower than the minimum recommended dilution for agricultural and household use. Relation could not be observed between the biological effects and type of glyphosate-salts; hence toxicity could be linked to the co-formulants, which are not even declared in 3 GBHs. Toxicological evaluation must focus on these substances and free accessibility of GBHs should be reconsidered.
Mostrar más [+] Menos [-]Impact of inorganic ions and pH variations on toxicity and endocrine potential of selected environmentally relevant pharmaceuticals
2018
Wieczerzak, Monika | Kudłak, Błażej | Yotova, Galina | Tsakovski, Stefan | Simeonov, Vasil | Namieśnik, Jacek
Assessment of the impact of pharmaceutical residues on living organisms is a very complex subject. Apart from taking into account the toxicity of individual compounds, environmental factors should also be taken into account. In this paper, attempts were made to assess the impact of coexisting inorganic ions and changes in pH on the toxicity of ten selected pharmaceuticals. Two bioassays were used to measure the estrogenic and androgenic effects (XenoScreen YES/YAS – Saccharomyces cerevisiae) and acute toxicity (Microtox® – Vibrio fischeri).The Microtox® test gave the most definitive outputs concerning the determination of interaction type between drugs and chemical species. Synergism was proven for almost all drugs and chemical species, and only two cases of antagonism were found. Significant drug/pH interactions were rare.Regarding the XenoScreen YES/YAS bioassay, when estrogenic and androgenic agonistic effects (YES+ and YAS+, respectively) were studied, many cases of well-expressed synergism for all inorganic ions with limited number of drugs (diazepam, fluoxetine, estrone, chloramphenicol for the YES+ test and diazepam, progesterone, androstenedione, and estrone for the YAS+ test) were found. Antagonism was also proven for the YES+ test, especially for diclofenac and androstenedione interacting with cations. On the other hand, the YES- and YAS- tests (estrogenic and androgenic, respectively, antagonistic effects) did not indicate cases of synergetic interaction except for the couples Br−/diazepam and NH4+/ketoprofen. Antagonistic drug/ion interactions were detected only with diclofenac and fluoxetine. It is interesting that well-expressed (antagonism or synergism) drug/pH interactions were rare.Both tests were found utilizable in performing studies on impact of ions/pH fluctuations on drugs mixtures' toxicity confirming in most cases synergic impact of parameters studied on toxicity. The approach proposed in the paper seems to be proven as a reliable tool in assessing impact of abiotic factors on toxicity and endocrine potential of complex mixtures of pharmaceuticals' mixtures.
Mostrar más [+] Menos [-]Assessment of micropollutants toxicity by using a modified Saccharomyces cerevisiae model
2021
Berrou, Kevin | Roig, Benoit | Cadiere, Axelle
Environment can be affected by a variety of micropollutants. In this paper, we develop a system to assess the toxicity on an environmental sample, based on the expression of a nanoluciferase under the control of the STB5 promotor in a yeast. The STB5 gene encodes for a transcription factor involved in a pleiotropic drug resistance and in the oxidative stress response. The response of the modified yeast was assessed using 42 micropollutants belonging to different families (antibiotics, pain killers, hormones, plasticizers, pesticides, etc.). Among them, 26 induced an increase of the bioluminescence for concentration ranges from pg.L⁻¹ to ng.L⁻¹. Surprisingly, for concentrations higher than 100 ng.L⁻¹, no response can be observed, suggesting that other mechanisms are involved when the stress increases. Analyzing the different responses obtained, we highlighted six nonmonotonic types of responses. The type of response seems to be independent of the properties of the compounds (polarity, toxicology, molecular weight) and of their family. In conclusion, we highlighted that a cellular response exists for very low exposition to environmental concentration of micropollutants and that it was necessary to explore the cellular mechanisms involved at very low concentration to provide a better risk assessment.
Mostrar más [+] Menos [-]Mitochondrial metabolism is central for response and resistance of Saccharomyces cerevisiae to exposure to a glyphosate-based herbicide
2020
Ravishankar, Apoorva | Cumming, Jonathan R. | Gallagher, Jennifer E.G.
Glyphosate-based herbicides, the most extensively used herbicides in the world, are available in an enormous number of commercial formulations with varying additives and adjuvants. Here, we study the effects of one such formulation, Credit41, in two genetically diverse yeast strains. A quantitative trait loci (QTL) analysis between a sensitive laboratory strain and a resistant strain linked mitochondrial function to Credit41 resistance. Two genes encoding mitochondrial proteins identified through the QTL analysis were HFA1, a gene that encodes a mitochondrial acetyl CoA carboxylase, and AAC3, which encodes a mitochondrial inner membrane ATP/ADP translocator. Further analysis of previously studied whole-genome sequencing data showed that, although each strain uses varying routes to attain glyphosate resistance, most strains have duplications of mitochondrial genes. One of the most well-studied functions of the mitochondria is the assembly of Fe–S clusters. In the current study, the expression of iron transporters in the transcriptome increased in cells resistant to Credit41. The levels of iron within the cell also increased in cells exposed to Credit41 but not pure glyphosate. Hence, the additives in glyphosate-based herbicides have a significant contribution to the negative effects of these commercial formulations on biological systems.
Mostrar más [+] Menos [-]Bisphenols (A, S, and F) affect the basic hormonal activity determined for pharmaceuticals – Study of Saccharomyces cerevisiae
2019
Kudłak, Błażej | Wieczerzak, Monika | Namieśnik, Jacek
Pharmaceuticals and analogs of bisphenol A (BPA) are increasingly threatening environmental pollutants. In this study, mixtures of selected pharmaceuticals (diclofenac sodium salt, chloramphenicol, oxytetracycline hydrochloride, fluoxetine hydrochloride, estrone, ketoprofen, progesterone, gemfibrozil and androstenedione) were prepared with BPA and its two analogs (namely, bisphenols F and S) at such ratios to reflect environmentally detectable levels. Then, the mixture solutions were studied with a XenoScreen YES/YAS assay to determine the variations in the initial hormonal response of each pharmaceutical compound due to the presence of a bisphenol analog. The results obtained were modeled with the concentration addition (CA) and independent action (IA) approaches, the trueness of which was studied with model deviation ratios (MDR). The estrogenic agonistic activity of the drugs studied was most strongly affected by the presence of BPA in solution (twenty-one cases of synergy observed for CA models versus twelve cases of antagonism in the case of IA predictions). BPS shows a strong agonistic estrogenic impact on most of the drugs studied at medium and high concentration levels; androgenic agonistic activity was also impaired with elevated concentrations of BPS. Increasing the concentration of BPF in a reaction mixture also increased the number of YES + synergism incidences (for CA modeling). Estrone, progesterone and androstenedione were mostly affected by the highest BPF concentrations studied in the case of androgenic agonistic research performed.
Mostrar más [+] Menos [-]Acid Dye Biodegradation Using Saccharomyces cerevisiae Immobilized with Polyethyleneimine-Treated Sugarcane Bagasse
2013
Mitter, E. K. | Corso, C. R.
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV–vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents.
Mostrar más [+] Menos [-]Influence of Yeast Bioinoculant Isolated from Indian Date Palm Tree (Phoenix sylvestris) Sap on the Health of Wheat Crop and Soil
2023
M. S. Ambawade, N. V. Manghwani, P. R. Madhyani, A. M. Shaikh, D. D. Patil and G. R. Pathade
In this study, three promising yeast isolates were isolated from the sap of the Indian date palm tree (Phoenix sylvestris) and characterized by biochemical tests and 18S rRNA gene sequencing. They were confirmed as Saccharomyces cerevisiae and were designated as strains PYS-1, PYS-2, and PYS-3. These confirmed strains were used for the preparation of bioinoculants. Bioinoculant was prepared and applied to wheat crops, and the effect of Bioinoculant. Statistical analysis is carried out using analysis of variance (ANOVA), and it is found that the absorbance of chlorophyll, protein, and Indole Acetic Acid (IAA) content is significantly increased. The treatment of bioinoculant showed that crops significantly increased chlorophyll, protein, and IAA content. Further, we applied bioinoculant on the soil and measured the soil’s humus content before and after the treatment of bioinoculant. Then, a paired t-test was applied to check the effectiveness of the treatment, and it was found to significantly increase humus content in the soil. The use of bioinoculants is an economically feasible and eco-friendly method.
Mostrar más [+] Menos [-]The toxicity of neodymium and genome-scale genetic screen of neodymium-sensitive gene deletion mutations in the yeast Saccharomyces cerevisiae
2022
Liu, Chengkun | Shi, Kailun | Lyu, Keliang | Liu, Dongwu | Wang, Xue
The wide usage of neodymium (Nd) in industry, agriculture, and medicine has made it become an emerging pollutant in the environment. Increasing Nd pollution has potential hazards to plants, animals, and microorganisms. Thus, it is necessary to study the toxicity of Nd and the mechanism of Nd transportation and detoxification in microorganisms. Through genome-scale screening, we identified 70 yeast monogene deletion mutations sensitive to Nd ions. These genes are mainly involved in metabolism, transcription, protein synthesis, cell cycle, DNA processing, protein folding, modification, and cell transport processes. Furthermore, the regulatory networks of Nd toxicity were identified by using the protein interaction group analysis. These networks are associated with various signal pathways, including calcium ion transport, phosphate pathways, vesicular transport, and cell autophagy. In addition, the content of Nd ions in yeast was detected by an inductively coupled plasma mass spectrometry, and most of these Nd-sensitive mutants showed an increased intracellular Nd content. In all, our results provide the basis for understanding the molecular mechanisms of detoxifying Nd ions in yeast cells, which will be useful for future studies on Nd-related issues in the environment, agriculture, and human health.
Mostrar más [+] Menos [-]A comparison study of test organism species and methodologies for combined toxicity assay of copper ions and zinc ions
2020
He, Jingting | Ma, Shuaining | Liu, Ling | Liu, Chang | Dong, Shaojun
The general toxicity assays for evaluating the risk of aquatic environment were commonly based on single-species test organism models. Thus, the lack and conflict of the different responses among species had hindered researchers to assess the real toxicity of a target toxicant. Therefore, the difference between the test species and their corresponding methodologies was investigated in this work and three species, Escherichia coli, Saccharomyces cerevisiae and Misgurnus anguillicaudatus (a fish), were chosen as the test organism for typical prokaryotes, eukaryotes, and vertebrates, respectively. More specifically, we investigated (i) the individual and combined toxicity of Cu²⁺ and Zn²⁺ by the three test organisms; (ii) the different evaluation manners for the test organisms, including IC₅₀ and toxic unit (TU) model for microorganisms by respiratory toxicity assay and enzyme-substrate assay, while survival time for fish; and (iii) the states of test organism, including suspended and immobilized states for microorganisms. The combined effects, including synergistic (Vt < Vp), antagonistic (Vt > Vp) and additive effects for the three species, were complex as that they were usually dose-dependent and could be changed by the different evaluation manners. The present work was useful for enriching of the associated theory and the insights from this work could open the way for further practical risk assessments.
Mostrar más [+] Menos [-]Immobilization of Saccharomyces cerevisiae Cells on Luffa cylindrica: a Study of a Novel Material for the Adsorption of Textile Dye
2017
Morão, Luana Galvão | Dilarri, Guilherme | Corso, Carlos Renato
The textile industry is responsible for the disposal of a large volume of effluents containing synthetic dyes, which are considered to be highly toxic compounds for both human health and the environment. The aim of the present study was to test potential use of a renewable, low-cost product—Luffa cylindrica in disk and powder form—as adsorbent material for the treatment of textile effluents containing dyes. Saccharomyces cerevisiae cells were also immobilized on L. cylindrica to increase the adsorbent capacity. Batch experiments were conducted for the evaluation of the removal of the azo dye Direct Red 23. The Langmuir, Freundlich, and Temkin isotherms were used for a better interpretation of the data. The results showed that adsorption is more efficient at acidic pH and all adsorbent materials best fit the Langmuir model, indicating the formation of a monolayer. The isotherm results also demonstrated that the materials immobilized with the yeast had a greater sorption rate, but the cell-free L. cylindrica powder had a higher adsorbate/adsorbent interaction. The comparison with a spectrophotometrically defined standard revealed that the powder without and with yeast cells was able to achieve an acceptable removal rate of the dye from the solution. Moreover, the difference in adsorption between the powder without and with yeast cells was very small. Thus, the application of the cell-free L. cylindrica powder is economically more feasible. The findings demonstrate the potential use of L. cylindrica powder as an adsorbent for the treatment of effluents containing textile dyes.
Mostrar más [+] Menos [-]