Refinar búsqueda
Resultados 1-10 de 26
Performance comparison of silicone and low-density polyethylene as passive samplers in a global monitoring network for aquatic organic contaminants
2022
Sobotka, Jaromír | Smedes, Foppe | Vrana, Branislav
Contamination with hydrophobic organic compounds (HOCs) such as persistent organic pollutants negatively affects global water quality. Accurate and globally comparable monitoring data are required to understand better the HOCs distribution and environmental fate. We present the first results of a proof-of-concept global monitoring campaign, the Aquatic Global Passive Sampling initiative (AQUA-GAPS), performed between 2016 and 2020, for assessing trends of freely dissolved HOC concentrations in global surface waters. One of the pilot campaign aims was to compare performance characteristics of silicone (SSP) and low-density polyethylene (PE) sheets co-deployed in parallel under identical conditions, i.e. at the same site, using the same deployment design, and for an equal period. Individual exposures lasted between 36 and 400 days, and samples were collected from 22 freshwater and 40 marine locations. The sampler inter-comparability is based on a rationale of common underlying principles, i.e. HOC diffusion through a water boundary layer (WBL) and absorption by the polymer. In the integrative uptake phase, equal surface-specific uptake in both samplers was observed for HOCs with a molecular volume less than 300 ų. For those HOCs, transport in the WBL controls the uptake as mass transfer in the polymer is over 20-times faster. In such a case, sampled HOC mass can be converted into aqueous concentrations using available models derived for WBL-controlled sampling using performance reference compounds. In contrast, for larger molecules, surface-specific uptake to PE was lower than to SSP. Diffusion in PE is slower than in SSP, and it is likely that for large molecules, diffusion in PE limits the transport from water to the sampler, complicating the interpretation. Although both samplers provided mostly well comparable results, we recommend, based on simpler practical handling, simpler data interpretation, and better availability of reliable polymer-water partition coefficients, silicone-based samplers for future operation in the worldwide monitoring programme.
Mostrar más [+] Menos [-]Application of equilibrium passive sampling to profile pore water and accessible concentrations of hydrophobic organic contaminants in Danube sediments
2020
Belháčová-Minaříková, Michaela | Smedes, Foppe | Rusina, Tatsiana P. | Vrana, Branislav
Total concentrations of hydrophobic organic contaminants (HOCs) in sediment present a poor quality assessment parameter for aquatic organism exposure and environmental risk because they do not reflect contaminant bioavailability. The bioavailability issue of HOCs in sediments can be addressed by application of multi-ratio equilibrium passive sampling (EPS). In this study, riverbed sediment samples were collected during the Joint Danube Survey at 9 locations along the Danube River in 2013. Samples were ex-situ equilibrated with silicone passive samplers. Desorption isotherms were constructed, yielding two endpoints: pore water (CW:₀) and accessible (CAS:₀) concentration of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers in sediment. CW:₀ concentrations of DDT and its breakdown products exhibited elevated levels in the low Danube, with the maximum in the river delta. Other investigated HOCs did not show any clear spatial trends along the river, and only a moderate CW:₀ variability. CAS:₀ in sediment ranged from 10 to 90% of the total concentration in sediment. CW:₀ was compared with freely dissolved concentration in the overlaying surface water, measured likewise by passive sampling. The comparison indicated potential compound release from sediment to the water phase for PAHs with less than four aromatic rings, and for remaining HOCs either equilibrium between sediment and water, or potential compound deposition in sediment. Sorption partition coefficients of HOC to organic carbon correlated well with octanol-water partition coefficients (KOW), showing stronger sorption of PAHs to sediment than that of PCBs and OCPs having equal logKOW. Comparison of CW:₀ values with European environmental quality standards indicated potential exceedance for hexachlorobenzene, fluoranthene and benzo[a]pyrene at several sites. The study demonstrates the utility of passive sampling as an innovative approach for risk-oriented monitoring of HOCs in river catchments.
Mostrar más [+] Menos [-]Environmental and individual PAH exposures near rural natural gas extraction
2018
Paulik, L Blair | Hobbie, Kevin A. | Rohlman, Diana | Smith, Brian W. | Scott, Richard P. | Kincl, Laurel | Haynes, Erin N. | Anderson, Kim A.
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants’ homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
Mostrar más [+] Menos [-]Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink
2016
Zhang, Yanyan | Pignatello, Joseph J. | Tao, Shu
Ingestion of soot present in soil or other environmental particles is expected to be an important route of exposure to nitro and oxygenated derivatives of polycyclic aromatic hydrocarbons (PAHs). We measured the apparent bioaccessibility (Bapp) of native concentrations of 1-nitropyrene (1N-PYR), 9-fluorenone (9FLO), anthracene-9,10-dione (ATQ), benzo[a]anthracene-7,12-dione (BaAQ), and benzanthrone (BZO) in a composite fuel soot sample using a previously-developed in vitro human gastrointestinal model that includes silicone sheet as a third-phase absorptive sink. Along with Bapp, we determined the 24-h sheet-digestive fluid partition coefficient (Ks,24h), the soot residue-fluid distribution ratio of the labile sorbed fraction after digestion (Kr,lab), and the maximum possible (limiting) bioaccessibility, Blim. The Bapp of PAH derivatives was positively affected by the presence of the sheet due to mass-action removal of the sorbed compounds. In all cases Bapp increased with imposition of fed conditions. The enhancement of Bapp under fed conditions is due to increasingly favorable mass transfer of target compounds from soot to fluid (increasing bile acid concentration, or adding food lipids) or transfer from fluid to sheet (by raising small intestinal pH). Food lipids may also enhance Bapp by mobilizing contaminants from nonlabile to labile states of the soot. Compared to the parent PAH, the derivatives had larger Kr,lab, despite having lower partition coefficients to various hydrophobic reference phases including silicone sheet. The Blim of the derivatives under the default conditions of the model ranged from 65.5% to 34.4%, in the order, 1N-PYR > ATQ > 9FLO > BZO > BaAQ, with no significant correlation with hydrophobic parameters, nor consistent relationship with Blim of the parent PAH. Consistent with earlier experiments on a wider range of PAHs, the results suggest that a major determinant of bioaccessibility is the distribution of chemical between nonlabile and labile states in the original solid.
Mostrar más [+] Menos [-]Improvements in pollutant monitoring: Optimizing silicone for co-deployment with polyethylene passive sampling devices
2014
O'Connell, Steven G. | McCartney, Melissa A. | Paulik, L Blair | Allan, Sarah E. | Tidwell, Lane G. | Wilson, Glenn | Anderson, Kim A.
Sequestering semi-polar compounds can be difficult with low-density polyethylene (LDPE), but those pollutants may be more efficiently absorbed using silicone. In this work, optimized methods for cleaning, infusing reference standards, and polymer extraction are reported along with field comparisons of several silicone materials for polycyclic aromatic hydrocarbons (PAHs) and pesticides. In a final field demonstration, the most optimal silicone material is coupled with LDPE in a large-scale study to examine PAHs in addition to oxygenated-PAHs (OPAHs) at a Superfund site. OPAHs exemplify a sensitive range of chemical properties to compare polymers (log Kow 0.2–5.3), and transformation products of commonly studied parent PAHs. On average, while polymer concentrations differed nearly 7-fold, water-calculated values were more similar (about 3.5-fold or less) for both PAHs (17) and OPAHs (7). Individual water concentrations of OPAHs differed dramatically between silicone and LDPE, highlighting the advantages of choosing appropriate polymers and optimized methods for pollutant monitoring.
Mostrar más [+] Menos [-]Physiological and molecular responses of springtails exposed to phenanthrene and drought
2014
Holmstrup, Martin | Slotsbo, Stine | Schmidt, Stine N. | Mayer, Philipp | Damgaard, Christian | Sørensen, Jesper G.
Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive.
Mostrar más [+] Menos [-]Levels and distribution of dissolved hydrophobic organic contaminants in the Morava river in Zlín district, Czech Republic as derived from their accumulation in silicone rubber passive samplers
2012
Prokeš, Roman | Vrana, Branislav | Klánová, Jana
Dissolved waterborne polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed over a period of one year at five sampling sites in a model industrial region in the Czech Republic using silicone rubber passive samplers. The spatial variability of POPs in the studied region in water was small and diffusive pollution sources predominate. Concentrations of the most volatile PAHs decreased with increasing water temperature in the whole region, which reflects the seasonality in atmospheric deposition. The dissolved concentrations of more hydrophobic PAHs, PCBs and OCPs in and downstream the industrial zone are related to desorption from suspended particles. Upstream the industrial area, a positive correlation of dissolved and particle-bound contamination was observed only for DDT metabolites and hexachlorobenzene. Calculated fugacities in water and bottom sediment indicated a fair degree of equilibrium between these compartments for OCPs and PCBs, whereas sediment represented a potential source of PAHs.
Mostrar más [+] Menos [-]Exposure of children and mothers to organophosphate esters: Prediction by house dust and silicone wristbands
2021
Xie, Qitong | Guan, Qingxia | Li, Liangzhong | Pan, Xiongfei | Ho, Cheuk-Lam | Liu, Xiaotu | Hou, Sen | Chen, Da
Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.
Mostrar más [+] Menos [-]Personal exposure to polycyclic aromatic hydrocarbons in Appalachian mining communities
2020
Hendryx, Michael | Wang, Shaorui | Romanak, Kevin A. | Salamova, Amina | Venier, Marta
Coal mining activities may increase residential exposure to polycyclic aromatic hydrocarbons (PAHs), but personal PAH exposures have not been studied in mining areas. We used silicone wristbands as passive personal samplers to estimate PAH exposures in coal mining communities in Central Appalachia in the United States. Adults (N = 101) wore wristbands for one week; 51 resided in communities within approximately three miles of surface mining sites, and 50 resided 10 or more miles from mining sites. Passive indoor polyurethane foam (PUF) sampling was conducted in residents’ homes, and a sample of 16 outdoor PUF samples were also collected. Nine PAH congeners were commonly detected in wristbands (mean ± standard deviation), including phenanthrene (50.2 ± 68.7 ng/g), benz[a]anthracene (20.2 ± 58.2 ng/g), fluoranthene (19.4 ± 24.1 ng/g) and pyrene (15.2 ± 18.2 ng/g). Controlling for participant characteristics and season, participants living closer to mining sites had significantly higher levels of phenanthrene, fluorene, fluoranthene, pyrene and ∑PAHs in wristbands compared to participants living farther from mining. Indoor air showed no significant group differences except for pyrene, but outdoor air showed significant or marginally significant differences for phenanthrene, fluorene, pyrene and ∑PAHs. The results suggest that mining community residents face exposure to outdoor mining-related pollutants, and demonstrate that personal silicone wristbands can be deployed as effective passive sampling devices.
Mostrar más [+] Menos [-]Development of film-based passive samplers for in situ monitoring of trace levels of pyrethroids in sediment
2018
Xu, Chenye | Wang, Jie | Richards, Jaben | Xu, Tianbo | Liu, Weiping | Gan, Jay
Residues of pyrethroid insecticides tend to accumulate in bed sediments due to their strong hydrophobicity. Rather than the total or bulk sediment concentration, it is the freely dissolved concentration (Cfᵣₑₑ) that drives toxicity to benthic invertebrates. In this study we developed thin film-based samplers for in situ ambient monitoring of pyrethroids at trace levels in sediment. Out of five common polymer materials, polyethylene (PE) and silicone rubber (SR), were identified to offer superior enrichment for pyrethroids from sediment. To circumvent the slow equilibrium process, ¹³C-permethrin and bifenthrin-d₅ were preloaded onto the films as performance reference compounds (PRCs). The PRC-preloaded film samplers were deployed at five sites in Southern California under field conditions for 7 d and retrieved for analysis. The sediment porewater Cfᵣₑₑ of eight pyrethroids derived from PRC-PE films ranged from 173 to 903 ng/L, accounting for 18.2–36.1% of the corresponding total porewater concentrations. The PRC-SR film samplers yielded Cfᵣₑₑ values closely mimicking those from the PRC-PE samplers, cross-validating the two sampling devices. Additionally, a significant positive association was found between the observed mortality from toxicity tests using Hyalella azteca and the Cfᵣₑₑ of bifenthrin (r = 0.628, p = 0.02). A significant linear correlation (R² = 0.99) between Cfᵣₑₑ derived from in situ monitoring and that of ex situ measurement under equilibrium conditions was also observed. Results from this study demonstrated that the film-based samplers may be used for in situ ambient monitoring to detect biologically relevant contamination of pyrethroids in bed sediments, which may contribute to improved risk assessment for this class of widely used insecticides.
Mostrar más [+] Menos [-]