Refinar búsqueda
Resultados 1-10 de 135
A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Mostrar más [+] Menos [-]Morphological, physiological and behavioral responses of an intertidal snail, Acanthina monodon (Pallas), to projected ocean acidification and cooling water conditions in upwelling ecosystems
2022
Duarte, Cristian | Jahnsen-Guzmán, Nicole | Quijón, Pedro A. | Manríquez, Patricio H. | Lardies, Marco A. | Fernández, Carolina | Reyes, Miguel | Zapata, Javier | García-Huidobro, M Roberto | Lagos, Nelson A.
Ocean acidification (OA) is expected to rise towards the end of the 21st century altering the life history traits in marine organisms. Upwelling systems will not escape OA, but unlike other areas of the ocean, cooling effects are expected to intensify in these systems. Regardless, studies evaluating the combined effects of OA and cooling remain scarce. We addressed this gap using a mesocosm system, where we exposed juveniles of the intertidal muricid snail Acanthina monodon to current and projected pCO₂ (500 vs. 1500 ppm) and temperature (15 vs. 10 °C) from the southeast Pacific upwelling system. After 9 weeks of experimental exposure to those conditions, we conducted three estimations of growth (wet weight, shell length and shell peristomal length), in addition to measuring calcification, metabolic and feeding rates and the ability of these organisms to return to the normal upright position after being overturned (self-righting). Growth, feeding and calcification rates increased in projected cooling conditions (10 °C) but were unaffected by pCO₂ or the interaction between pCO₂ and temperature. Instead, metabolic rates were driven by pCO₂, but a significant interaction with temperature suggests that in cooler conditions, metabolic rates will increase when associated with high pCO₂ levels. Snail self-righting times were not affected across treatments. These results suggest that colder temperatures projected for this area would drive this species growth, feeding and calcification, and consequently, some of its population biology and productivity. However, the snails may need to compensate for the increase in metabolic rates under the effects of ocean acidification. Although A. monodon ability to adjust to individual or combined stressors will likely account for some of the changes described here, our results point to a complex dynamic to take place in intertidal habitats associated with upwelling systems.
Mostrar más [+] Menos [-]Indirect herbivore biomanipulation may halt regime shift from clear to turbid after macrophyte restoration
2022
Zhang, Chengxiang | Pei, Hongcui | Lu, Cai | Liu, Cunqi | Wang, Wei | Zhang, Xiaobo | Liu, Peizhong | Lei, Guangchun
Eutrophication transforms clear water into turbid water in shallow lakes. Current restoration techniques focus on re-establishing the clear-water state rather than on its maintenance. We investigated the response of submerged macrophytes to temporary grass carp (Ctenopharyngodon idella) and scraping snail (Bellamya aeruginosa) introductions. We also explored the impacts of herbivores on underwater light conditions to identify their long- and short-term potential to halt regime shift from clear to turbid after clear-water state reestablishment. Herbivores reduced both the biomass of submerged macrophytes and accumulated nutrients in the tissue of submerged macrophytes. This potentially avoided the pulse of endogenous nutrient release which would have exceeded the threshold required for the regime shift from clear to turbid. However, herbivores had a non-significant impact on submerged macrophyte-reduced light attenuation coefficient, which has a positive linear relationship with water chlorophyll a. Further, grass carp and snails enhanced the inhibition ratio of submerged macrophytes to phytoplankton by 3.96 and 2.13 times, respectively. Our study provides novel findings on the potential of herbivore introduction as an indirect biomanipulation tool for halting the regime shift of shallow lakes from clear to turbid after the restoration of submerged macrophytes.
Mostrar más [+] Menos [-]Effects of river-lake disconnection and eutrophication on freshwater mollusc assemblages in floodplain lakes: Loss of congeneric species leads to changes in both assemblage composition and taxonomic relatedness
2022
Jiang, Xiaoming | Li, Zhengfei | Shu, Fengyue | Chen, Jing
River floodplain ecosystems host one of the highest freshwater molluscan biodiversity on Earth. However, multiple human disturbances, such as loss of hydrological connectivity and deterioration of water quality, are seriously threatening most floodplain lakes throughout the world. Given the high imperilment rate of freshwater molluscs but the scarcity of studies examining the anthropogenic effects on this fauna, we test the response of mollusc assemblages to river-lake disconnection and eutrophication in 30 lakes in the Yangtze River floodplain, China. The species richness of entire Mollusca, Gastropoda and Bivalvia and 6 dominant families were all much lower at disconnected lakes than that in connected lakes, and decreased with increasing water eutrophication. The assemblage structure differed significantly among four lake groups for datasets based on entire Mollusca, Gastropoda and Bivalvia, indicating the serious impacts of hydrological disconnection and eutrophication. Moreover, the connected lakes showed significantly lower values of average taxonomic distinctness (Δ⁺) but higher values of variation in taxonomic distinctness (Λ⁺) than disconnected lakes. Such variations were triggered by the extirpation of congeneric and endemic species (mainly from families Unionidae and Viviparidae), which giving a waring of the loss of mollusc endemism in this region. In general, the present study showed that river-lake disconnection and deterioration of water quality resulted in serious biodiversity declines of both gastropods and bivalves in the Yangtze River floodplain lakes. A systematic approach including restoration of river-lake connectivity and habitats and improvement of water quality should be implemented in the conservation planning in this large river floodplain.
Mostrar más [+] Menos [-]The combined effects of macrophytes and three road salts on aquatic communities in outdoor mesocosms
2021
Coldsnow, Kayla D. | Relyea, Rick A.
Because of environmental and societal concerns, new strategies are being developed to mitigate the effects of road salt. These include new deicers that are alternatives to or mixtures with the most common road salt, sodium chloride (NaCl), improved techniques and equipment, and biotic mitigation methods. Using outdoor mesocosms, we investigated the impacts of NaCl and two common alternatives, magnesium chloride (MgCl₂) and calcium chloride (CaCl₂) on freshwater communities. We also investigated the mitigation ability of a common macrophyte, Elodea. We hypothesized that road salt exposure reduces filamentous algae, zooplankton, and macrocrustaceans, but results in increases in phytoplankton and gastropods. We also hypothesized that MgCl₂ is the most toxic salt to communities, followed by CaCl₂, and then NaCl. Lastly, we hypothesized that macrophytes mitigate some of the effects of road salt, specifically the effects on primary producers. We found that all three salts reduced filamentous algal biomass and amphipod abundance, but only MgCl₂ reduced Elodea biomass. MgCl₂ had the largest and longest lasting effects on zooplankton, specifically cladocerans and copepods, which resulted in a significant increase in phytoplankton and rotifers. CaCl₂ increased ostracods and decreased snail abundance, but NaCl increased snail abundance. Lastly, while we did not find many interactions between road salt and macrophyte treatments, macrophytes did counteract many of the salt effects on producers, leading to decreased phytoplankton, increased filamentous algae, and altered abiotic responses. Thus, at similar chloride concentrations, NaCl alternatives, specifically MgCl₂, are not safer for aquatic ecosystems and more research is needed to find safer road management strategies to protect freshwater ecosystems.
Mostrar más [+] Menos [-]In vivo evaluation of oxidative stress and biochemical alteration as biomarkers in glass clover snail, Monacha cartusiana exposed to zinc oxide nanoparticles
2020
Abdel-Halim, Khaled Y. | Osman, Safaa R. | Abdou, Gehan Y.
Oxidative stress is considered a main commonly reported mechanism of nanoparticles toxicity, so this study aimed to evaluate oxidative stress and biochemical alterations in the haemolymph and digestive gland of snail, Monacha cartusiana exposed to sublethal concentrations of zinc oxide nanoparticles (ZnONPs) for 14 days (d). The results indicated that, ZnONPs induced significant increases in lipid peroxidation (LPO) and lactate dehydrogenase (LDH) in treated animals and did not return to normal levels after recover period. A significant decline of glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, and glutathione (GSH) content in the haemolymph and digestive gland of snails was observed when compared with control. A significant increase was observed in catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities of treated animals. In general, nano-materials are able to induce oxidative stress in exposed animals. The present findings indicate that, alterations of antioxidant enzyme activities, increase of LPO, LDH, and reducing of GSH content and GST, GPx activities are recognized to oxidative stress and cell damage. This species could be considered a good bioindicator to assess nano-materials exposure.
Mostrar más [+] Menos [-]A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption
2017
Druart, Coline | Gimbert, Frédéric | Scheifler, Renaud | de Vaufleury, Annette
A full life-cycle (240 days) bioassay using the terrestrial snail, Cantareus aspersus, allowing exposure during embryogenesis and/or the growth and reproduction phases, was used to assess the effects of Bypass®, a glyphosate-based herbicide (GlyBH), on a range of endpoints, including parameters under endocrine control. As a positive control, a mixture (R-A) made of diquat (Reglone®) and nonylphenols (NP, Agral®), known for its endocrine disrupting effects in other organisms, was tested. At environmental concentrations, both pesticides (R-A mixture and GlyBH) enhanced growth but reduced reproduction. The R-A mixture acted mainly on the fecundity through a delay in egg-laying of approximately 20 days and a strongly reduced number of clutches. This latter dysfunction may be caused by a permanent eversion of the penis, suggesting a disrupting effect at the neuro-endocrine level, which prevented normal mating. GlyBH acted on fertility, possibly due to a decrease in the fertilization of eggs laid by adults exposed during their embryonic development. These results, associated with the absence of observed effects on gonad histology of GlyBH exposed snails, suggested that the underlying mechanisms are neuro-endocrine.
Mostrar más [+] Menos [-]The association of cancer risks with pentachlorophenol exposure: Focusing on community population in the areas along certain section of Yangtze River in China
2017
Cui, Yanjie | Liang, Ling | Zhong, Qi | He, Qian | Shan, Xiaomei | Chen, Keyang | Huang, Fen
Pentachlorophenol (PCP) was used in large quantities, and mainly for killing the intermediate host snails of schistosome in China, thereby resulting in ubiquitous PCP residue in the environment. However, studies considering the carcinogenicity of PCP for humans mainly focused on occupational workers, and the actual carcinogenicity of PCP for general population is uncertain. To investigate the association between cancer risks and PCP exposure in a community population, an ecological study was conducted in three contaminated areas along the Yangtze River. Standardized rate ratio (SRR) was calculated to represent the risk of cancer incidence, by using incidence in the low PCP exposure category as the reference group. A total of 15,962 cancer records were collected, and 76 water samples and 213 urine samples in three areas were examined. Our findings suggested that compared with the low PCP group, the high PCP group had significantly excessive incidences of various cancers related to different organs including lymph (SRR = 19.44, 95% CI = 15.00–25.19), blood (SRR = 17.24, 95% CI = 12.92–23.01), nasopharynx (SRR = 3.97, 95% CI = 3.75–4.21), gallbladder (SRR = 3.46, 95% CI = 3.09–3.87), pancreas (SRR = 3.41, 95% CI = 3.07–3.79), respiratory system (SRR = 3.41, 95% CI = 3.27–3.57) and liver (SRR = 3.31, 95% CI = 3.09–3.56). Taken together, our present study provides evidence that general community population exposed to high level of PCP exhibits a broader spectrum of increased cancer risks as compared to occupational groups.
Mostrar más [+] Menos [-]Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism
2017
Martínez-Paz, Pedro | Morales, Monica | Sánchez-Argüello, Paloma | Morcillo, Gloria | Martínez-Guitarte, José Luis
The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
Mostrar más [+] Menos [-]Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable
2016
Mariet, Anne-Lise | de Vaufleury, Annette | Bégeot, Carole | Walter-Simonnet, Anne-Véronique | Gimbert, Frédéric
Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former PbAg mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment.
Mostrar más [+] Menos [-]