Refinar búsqueda
Resultados 1-10 de 682
Studies on the solid waste extracts from a chloro alkali factory: I. Morphological behaviour of rice seedlings grown in the waste extract.
1984
Misra S.R. | Misra B.N.
Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
Mostrar más [+] Menos [-]Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters
2021
Wang, Junyu | Zhao, Xiaoli | Wu, Aiming | Tang, Zhi | Niu, Lin | Wu, Fengchang | Wang, Fanfan | Zhao, Tianhui | Fu, Zhiyou
Nanoplastics (NPs) are becoming emerging pollutants of global concern. Understanding the environmental behavior of NPs is crucial for their environmental and human risk assessment. In this study, the aggregation and stability of polystyrene (PS) NPs were investigated under different hydrochemical conditions such as pH, salt type (NaCl, CaCl₂, Na₂SO₄), ionic strength (IS), and natural organic matter (NOM). The critical coagulation concentrations of PS NPs were determined to be 158.7 mM NaCl, 12.2 mM CaCl₂, and 80.0 mM Na₂SO₄. Ca²⁺ was more effective in destabilizing PS NPs, compared to Na⁺, owing to its stronger charge screening effect. In the presence of monovalent ions, NOM reduced aggregation through steric repulsion, whereas in the case of divalent ions, NOM induced aggregation through cation bridging. Initial and long-term stability studies demonstrated that, in waters with high IS and NOM content, NOM was the most significant factor affecting NPs aggregation. PS NPs would be highly suspended in all freshwaters, and even in wastewater, whereas they would aggregate rapidly and deposit in seawater. Finally, a statistical model was established to evaluate the hydrodynamic diameter of NPs in different waters. The results indicated the stability of PS NPs in natural aquatic environments and their potential for long-term transport.
Mostrar más [+] Menos [-]An assessment of contamination fingerprinting techniques for determining the impact of domestic wastewater treatment systems on private well supplies
2021
Fennell, Christopher | Misstear, Bruce | O’Connell, David | Dubber, Donata | Behan, Patrice | Danaher, Martin | Moloney, Mary | Gill, Laurence
Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland. A one-off sampling and analysis campaign of 212 private wells found that 15% were contaminated with E. coli. More extensive monitoring of 24 selected wells found 58% to be contaminated with E. coli on at least one occasion over a 14-month period. The application of fingerprinting techniques to these monitored wells found that the use of chloride/bromide and potassium/sodium ratios is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, neither fluorescent whitening compounds nor caffeine were detected in any wells, and faecal sterol profiles proved inconclusive, suggesting limited suitability for the conditions investigated.
Mostrar más [+] Menos [-]Physiological plasticity and acclimatory responses to salinity stress are ion-specific in the mayfly, Neocloeon triangulifer
2021
Orr, Sarah E. | Negrão Watanabe, Tatiane Terumi | Buchwalter, David B.
Freshwater salinization is a rapidly emerging ecological issue and is correlated with significant declines in aquatic biodiversity. It remains unclear how changing salinity regimes affect the physiology of sensitive aquatic insects. We used the parthenogenetic mayfly, Neocloeon triangulifer, to ask how ionic exposure history alters physiological processes and responses to subsequent major ion exposures. Using radiotracers (²²Na, ³⁵SO₄, and ⁴⁵Ca), we observed that mayflies chronically reared in elevated sodium or sulfate (157 mg L⁻¹ Na or 667 mg L⁻¹ SO₄) had 2-fold (p < 0.0001) and 8-fold (p < 0.0001) lower ion uptake rates than mayflies reared in dilute control water (16 mg L⁻¹ Na and 23 mg L⁻¹ SO₄) and subsequently transferred to elevated salinities, respectively. These acclimatory ion transport changes provided protection in 96-h toxicity bioassays for sodium, but not sulfate. Interestingly, calcium uptake was uniformly much lower and minimally influenced by exposure history, but was poorly tolerated in the toxicity bioassays. With qRT-PCR, we observed that the expression of many ion transporter genes in mayflies was influenced by elevated salinity in an ion-specific manner (general upregulation in response to sulfate, downregulation in response to calcium). Elevated sodium exposure had minimal influence on the same genes. Finally, we provide novel light microscopic evidence of histomorphological changes within the epithelium of the Malpighian tubules (insect primary excretory system) that undergoes cellular degeneration and necrosis secondary to calcium toxicity. We conclude that physiological plasticity to salinity stress is ion-specific and provide evidence for ion-specific toxicity mechanisms in N. triangulifer.
Mostrar más [+] Menos [-]Assessment of hydrochemical backgrounds and threshold values of groundwater in a part of desert area, Rajasthan, India
2020
Rahman, Abdur | Tiwari, K.K. | Mondal, N.C.
Natural background levels (NBLs) and threshold values (TVs) are crucial parameters for identification and the quantification of groundwater pollution, and the evaluation of pollution control measures. The cumulative probability distribution technique was used for the evaluation of NBLs for 36 samples collected during two climate conditions in the part of the desert area from Rajasthan, India. The NBLs for Na⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻ and F⁻ ions were assessed and compared with the natural and anthropogenic processes. The TVs were also calculated for Na⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻ and F⁻ ions, and compared with the drinking limits of the Bureau of Indian Standards. Additionally, the pollution percentage (%) at the individual well was estimated and identified the polluted zones. Results indicate that most of the polluted areas were situated in the southern part, which was influenced by the natural and anthropogenic factors. The sodium concentrations above the TVs, in indicating the saline nature of water. Chloride threshold value above the drinking water limit was mainly observed in the dry season, related to intensive evaporation and industrial waste, which leads to groundwater quality degradation. The NO₃⁻ concentration (∼56% samples) above the TVs indicates extensive use of nitrate fertilizers and sewage effluent. The values of total dissolved solids (TDS) shows the suspicious scenario as about 84% of the samples in the dry period and about 89% in the wet season exceeding the drinking limit. Assessment of background concentrations and threshold values on regional and local scale assigns the basis for the identification of groundwater pollution, and helpful for better water quality guidelines to protecting of water resources.
Mostrar más [+] Menos [-]Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils
2020
Fang, Linchuan | Ju, Wenliang | Yang, Congli | Jin, Xiaolian | Liu, Dongdong | Li, Mengdi | Yu, Jialuo | Zhao, Wei | Zhang, Chao
Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H₂S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H₂S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H₂S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.
Mostrar más [+] Menos [-]Growth and physiological responses of tree seedlings to oil sands non-segregated tailings
2020
Zhang, Wen-Qing | Fleurial, Killian | Sherr, Ira | Vassov, Robert | Zwiazek, Janusz J.
Bitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined. In the present study, we investigated the effects of NST on seedlings of three species of plants commonly planted in oil sands reclamation sites including paper birch (Betula papyrifera), white spruce (Picea glauca) and green alder (Alnus viridis). In the controlled-environment study, we grew seedlings directly in NST and in the two types of reclamation soils with and without added NST and we measured seedling growth, gas exchange parameters, as well as tissue concentrations of selected elements and foliar chlorophyll. White spruce seedlings suffered from severe mortality when grown directly in NST and their needles contained high concentrations of Na. The growth and physiological processes were also inhibited by NST in green alder and paper birch. However, the addition of top soil and peat mineral soil mix to NST significantly improved the growth of plants, possibly due to a more balanced nutrient uptake. It appears that NST may offer some advantages in terms of site revegetation compared with the traditional oil sands tailings that were used in the past. The results also suggest that, white spruce may be less suitable for planting at reclamation sites containing NST compared with the two studied deciduous tree species.
Mostrar más [+] Menos [-]Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India
2020
Jain, Srishti | Sharma, S.K. | Vijayan, En. | Mandal, T.K.
The present study attempts to explore and compare the seasonal variability in chemical composition and contributions of different sources of fine and coarse fractions of aerosols (PM₂.₅ and PM₁₀) in Delhi, India from January 2013 to December 2016. The annual average concentrations of PM₂.₅ and PM₁₀ were 131 ± 79 μg m⁻³ (range: 17–417 μg m⁻³) and 238 ± 106 μg m⁻³ (range: 34–537 μg m⁻³), respectively. PM₂.₅ and PM₁₀ samples were chemically characterized to assess their chemical components [i.e. organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSICs) and heavy and trace elements] and then used for estimation of enrichment factors (EFs) and applied positive matrix factorization (PMF5) model to evaluate their prominent sources on seasonal basis in Delhi. PMF identified eight major sources i.e. Secondary nitrate (SN), secondary sulphate (SS), vehicular emissions (VE), biomass burning (BB), soil dust (SD), fossil fuel combustion (FFC), sodium and magnesium salts (SMS) and industrial emissions (IE). Total carbon contributes ∼28% to the total PM₂.₅ concentration and 24% to the total PM₁₀ concentration and followed the similar seasonality pattern. SN and SS followed opposite seasonal pattern, where SN was higher during colder seasons while SS was greater during warm seasons. The seasonal differences in VE contributions were not very striking as it prevails evidently most of year. Emissions from BB is one of the major sources in Delhi with larger contribution during winter and post monsoon seasons due to stable meteorological conditions and aggrandized biomass burning (agriculture residue burning in and around the regions; mainly Punjab and Haryana) and domestic heating during the season. Conditional Bivariate Probability Function (CBPF) plots revealed that the maximum concentrations of PM₂.₅ and PM₁₀ were carried by north westerly winds (north-western Indo Gangetic Plains of India).
Mostrar más [+] Menos [-]Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types
2020
Hossain, Mobarok | Patra, Pulak Kumar
High concentration of fluoride (up to 20.9 mg/L) in groundwater with significant variation (p = 5.9E-128) among samples was reported from Birbhum district, an acknowledged fluoride endemic region in India. The groundwater samples (N = 368) were grouped based on their hydrochemical properties and aquifer geology for hydro-geochemical characterization. Friedman’s test showed p < 0.0001 confidence level which indicates that fluoride concentration among geological groups and water groups are independent. Bland-Altman plot was used to study the inter-relationships among the groups through bias value (∂) and limit of agreement (LoA). Among the geological groups, laterites and granite-gneiss groups exhibited statistically significantly difference in fluoride geochemistry; whereas the younger and older alluvium groups displayed similar characteristics. The fluoride concentration was found to be in the order Lateritic > Granite-gneiss > Older alluvium ≥ Younger alluvium. Dissolution of minerals (such as fluorite, biotite) in laterite sheeted basalt, and granite-gneiss is the main source of groundwater fluoride in the region. Fluoride concentration is also influenced by depth of water table. Hydrochemical study indicated that fluoride concentration was higher in Na–HCO₃ than in Ca–SO₄ and Ca–HCO₃ type of groundwater. The fluoride concentration were positively correlated with Na⁺ and pH and negatively correlated with the Ca²⁺ and Mg²⁺ signifying linkage with halite dissolution and calcite, dolomite precipitation. Geostatistical mapping of WQI through empirical bayesian kriging (EBK) with respect to regional optimal guideline value (0.73 mg/L) classified that groundwater in some parts of the district are unfit for drinking purpose. Health survey (N = 1767) based on Dean’s criteria for dental fluorosis indicated presence of slight to moderate dental hazard. Besides, providing baseline data for management of groundwater quality in the study area, the study demonstrated the applicability of Bland-Altman analysis and empirical bayesian kriging (EBK) in delineation and interpolation of fluoride contaminated region.
Mostrar más [+] Menos [-]