Refinar búsqueda
Resultados 1-10 de 25
Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality
2019
Montiel-Rozas, María del Mar | Hurtado-Navarro, María | Díez-Rojo, Miguel Ángel | Pascual, José A. (José Antonio) | Ros, Margarita
The control of agricultural pests is key to maintain economically viable crops. Increasing environmental awareness, however, is leading to more restrictive European policies regulating the use of certain pesticides due to their impact on human health and the soil system. Given this context, we evaluated the efficacy of three alternatives to the soil fumigant 1,3-dichloropropene (1,3-D), which is currently banned in Europe: two non-fumigant nematicides [oxamyl (OX) and fenamiphos (FEN)] and the soil fumigant dimethyl disulfide (DMDS). We analysed the efficiency of these pesticides against root-knot nematodes and soil fungal pathogens (determined by qPCR) as well as the soil biological quality after treatments application (estimated by enzyme activities). Among treatments, 1,3-D and DMDS significantly reduced nematode populations. FEN was more effective in sandy soil, while OX had no effect in any soil. OX and FEN had no effect on fungal pathogens, whereas DMDS reduced the abundance of Rhizoctonia solani and Fusarium solani at the root level in clay-loam soil. Soil quality decreased after treatment application but then recovered throughout the experiment, indicating the possible dissipation of the pesticides. Our findings support DMDS as a potential sustainable alternative for controlling root-knot nematodes and fungal pathogens due to its effectiveness in both studied soils, although its negative impact on soil biological quality in sandier soils must be taken into account.Main finding of the work. DMDS is a reliable alternative to 1,3-D for controlling agricultural pest but its inhibitory effect on soil enzyme activities varied according to the soil characteristics.
Mostrar más [+] Menos [-]An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest
2018
Shi, Leilei | Zhang, Hongzhi | Liu, Tao | Mao, Peng | Zhang, Weixin | Shao, Yuanhu | Fu, Shenglei
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure.
Mostrar más [+] Menos [-]Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites
2016
Boriová, Katarína | Urík, Martin | Bujdoš, Marek | Pifková, Ivana | Matúš, Peter
Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger’s exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L−1, respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the extraction procedure inspired by bio-assisted extraction of aluminium by common soil fungus A. niger.
Mostrar más [+] Menos [-]Sugarcane cultivar-dependent changes in assemblage of soil rhizosphere fungal communities in subtropical ecosystem
2022
Tayyab, Muhammad | Fallah, Nyumah | Zhang, Caifang | Pang, Ziqin | Islam, Waqar | Lin, Sheng | Lin, Wenxiong | Zhang, Hua
Sugarcane cultivars (Saccharum officinarum L.) are widely cultivated for both sugar and renewable energy in China. The response of rhizosphere fungal composition and diversity to different emerging sugarcane cultivars is limited. Therefore, utilizing high-throughput sequencing, we explored fungal communities’ structure in soils adhering to six sugarcane cultivars’ roots (Guitang 08–120, Regan14-62, Guitang 08–1180, Haizhe 22, Liucheng 05–136, Taitang 22) in Guangxi Province, China. Our results suggested that sugarcane varieties significantly altered rhizosphere soil attributes, with Haizhe 22 having substantially lower soil pH, organic matter (OM), available phosphorus (AP), and soil water contents (SWC) than others cultivars. Different sugarcane varieties did not substantially affected the Shannon fungal diversity index, but the apparent effect on fungal richness was significant. Beta diversity analysis revealed that “Haizhe 22” distinguished the fungal community from the other five cultivars. Soil pH, OM, cultivars, and soil moisture were crucial determinants in shaping soil fungal composition. The Haizhe 22 rhizosphere significantly enriched the operational taxonomic units (OTUs) assigned to two fungal genera (Cephalotheca and Sagenomella), while rhizosphere of other verities significantly enriched the OTUs assigned to four fungal genera (Chaetomium, Chaetosphaeria, Mortierella, and Talaromyces), suggesting their essential role in plant development, disease tolerance, and bioremediation. These findings may help in selecting or breeding innovative genotypes capable of supporting abundant rhizosphere fungi beneficial to plants that would likely improve crops’ agronomic potential and maintain soil ecosystem sustainability.
Mostrar más [+] Menos [-]Assessing the relationship between airborne fungi and potential dust sources using a combined approach
2022
Tajiki, Forough | Asgari, Hossein Mohammad | Zamani, Isaac | Ghanbari, Farshid
Dust events impose negative socio-economic, health, and environmental impacts on vulnerable areas and reflect their sources’ physiochemical and biological characteristics. This study aimed to assess the impact of two dust sources on the concentration and diversity of airborne fungi in one of the dustiest areas in the world. This study is the first attempt to investigate the relationship between dust sources fungal community and those in airborne dust. Also, the contribution of dust sources to airborne fungi was estimated. Air masses arriving at the study area were assessed using local wind rose and the HYSPLIT model. Sampling was carried out from airborne dust at the Arvand Free Zone as target areas and soil in the dried parts of the Hor al-Azim and Shadegan wetlands as source areas to explore the relationship between fungi in the dust sources and the downwind area. The samples were analyzed in the lab to extract DNA. The internal transcribed spacer (ITS) regions of the rDNA gene were amplified using the primers ITS1F and ITS4, and then PCR products were sent to the lab for sequencing. The raw DNA data were processed using the QIIME virtual box to pick operational taxonomic units and taxonomy assignments. The most common fungi at the genus level were in the order of Penicillium > Aspergillus > Alternaria > Fusarium > Paradendryphiella > Talaromyces. The similarity between air and soil fungal genera was investigated using richness and diversity indices, the phylogenetic tree, and principal component analysis. The results showed that the community structures of ambient fungi in the Hor al-Azim and Shadegan dust sources were more similar to those on dusty days than non-dusty days. The source tracker model was used to quantify the contributions of known dust sources to airborne fungi. The results showed that the main source of airborne fungi was Hor al-Azim on dusty and non-dusty days. This study’s results can help managers identify and prioritize dust sources regarding fungal species.
Mostrar más [+] Menos [-]Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03
2020
Al Farraj, Dunia Abdulaziz | Hadibarata, Tony | Elshikh, Mohamed Soliman | Al Khulaifi, Manal M. | Kristanti, Risky Ayu
Pyrene, a toxic four-benzene-ring that persists in the ecosystem, is highly resistant to degradation. The goal of the research is to screen, isolate, and identify pyrene-degrading filamentous fungi via the molecular biological identification method. The capabilities of identified isolates in biodegradation and transformation of pyrene were also evaluated. Based on the morphological characterization and sequence alignments, results of neighbor-joining phylogenetic tree from 18S rRNA of F03 revealed that genetic similarity had achieved 99% of homology percentage and identified as Trichoderma sp. Trichoderma sp. F03 was able to degrade pyrene (78%) when culture conditions were set at 100 mg/L initial pyrene concentration in culture medium with pH 5 at 27 °C, the use of glucose as a carbon source and polyethylene glycol sorbitan monooleate as a biosurfactant without agitation. Finally, three metabolites, benzoic acid, 3-hydroxybenzoic acid, and acetic acid, were detected during the pyrene degradation process by using gas chromatography–mass spectrometry (GCMS).
Mostrar más [+] Menos [-]Biovolatilization of Arsenic by Different Fungal Strains
2007
Urík, Martin | Čerňanský, Slavomír | Ševc, Jaroslav | Šimonovičová, Alexandra | Littera, Pavol
The quantification of arsenic biovolatilization by microscopic filamentous fungi Aspergillus clavatus, A. niger, Trichoderma viride and Penicillium glabrum under laboratory conditions is discussed in this article. The fungi were cultivated on a liquid medium enriched with inorganic arsenic in pentavalent form (H₃AsO₄). Filamentous fungi volatilized 0.010 mg to 0.067 mg and 0.093 mg to 0.262 mg of arsenic from cultivation systems enriched with 0.25 mg (5 mg.l-¹ of arsenic in culture media) and 1.00 mg of arsenic (20 mg.l-¹ of arsenic in culture media), respectively. These results represent the loss of arsenic after a 30-day cultivation from cultivation systems. The production of volatile arsenic derivatives by the A. niger and A. clavatus strains was also determined by hourly sorption using the sorbent Anasorb (CSC) on the 29th day of cultivation.
Mostrar más [+] Menos [-]Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms
2021
Tayyab, Muhammad | Yang, Ziqi | Zhang, Caifang | Islam, Waqar | Lin, Wenxiong | Zhang, Hua
Sugarcane monoculture (SM) often leads to soil problems, like soil acidification, degradation, and soil-borne diseases, which ultimately pose a negative impact on agricultural productivity and sustainability. Understanding the change in microbial communities’ composition, activities, and functional microbial taxa associated with the plant and soil under SM is unclear. Using multidisciplinary approaches such as Illumina sequencing, measurements of soil properties, and enzyme activities, we analyzed soil samples from three sugarcane fields with different monoculture histories (1-, 2-, and 4-year cultivation times, respectively). We observed that SM induced soil acidity and had adverse effects on soil fertility, i.e., soil organic matter (OM), total nitrogen (TN), total carbon (TC), and available potassium (AK), as well as enzyme activities indicative for carbon, phosphorus, and nitrogen cycles. Non-metric multidimensional scaling (NMDS) analysis showed that SM time greatly affected soil attribute patterns. We observed strong correlation among soil enzymes activities and soil physiochemical properties (soil pH, OM, and TC). Alpha diversity analysis showed a varying response of the microbes to SM time. Bacterial diversity increased with increasing oligotrophs (e.g., Acidobacteria and Chloroflexi), while fungal diversity decreased with reducing copiotrophs (e.g., Ascomycota). β-Diversity analysis showed that SM time had a great influence on soil microbial structure and soil properties, which led to the changes in major components of microbial structure (soil pH, OM, TC, bacteria and soil pH; TC, fungi). Additionally, SM time significantly stimulated (four bacterial and ten fungal) and depleted (12 bacterial and three fungal) agriculturally and ecologically important microbial genera that were strongly and considerably correlated with soil characteristics (soil pH, OM, TC, and AK). In conclusion, SM induces soil acidity, reduces soil fertility, shifts microbial structure, and reduces its activity. Furthermore, most beneficial bacterial genera decreased significantly due to SM, while beneficial fungal genera showed a reverse trend. Therefore, mitigating soil acidity, improving soil fertility, and soil enzymatic activities, including improved microbial structure with beneficial service to plants and soil, can be an effective measure to develop a sustainable sugarcane cropping system.
Mostrar más [+] Menos [-]High Polyacrylamide Application Rates Do Not Affect Eubacterial Structural Diversity
2013
Entry, James A. | Mills, DeEtta | Jayachandran, K. V. | Sojka, R. E.
Anionic polyacrylamide (PAM) is a linear, water-soluble anionic polymer that is widely used for erosion control and water quality protection. There has been an issue whether this formulation could possibly have negative effects on soil microbial diversity by altering microbial binding to soil particles or to one another and thus restricting their mobility and role in carbon and nutrient cycling. We conducted an 8-year study annually applying ultra-high rates of PAM to soil and then monitored impacts on soil bacterial diversity. In July and August, we measured active soil bacterial and fungal biomass and microbial diversity in soils receiving 0 (control), 2,691, and 5,382 kg active ingredient PAM ha⁻¹. Active microbial biomass in soil was 19–33 % greater in the untreated control than soil treated with 2,691 or 5,382 kg of active ingredient PAM ha⁻¹. Active bacterial biomass in soil was 21–31 % greater in the control treatment than in soil treated with 2,691 or 5,382 kg of active ingredient PAM ha⁻¹ in August, but not July. Active fungal biomass in soils was 38–50 % greater in the control treatment than soil treated with 2,691 or 5,382 kg of active ingredient PAM ha⁻¹ in July, but not August. Molecular methods were used to access the bacterial diversity, richness, and evenness in an agricultural soil that received 0 (control), 2,691, and 5,382 kg of active ingredient PAM ha⁻¹. We found that although soil receiving these massive PAM application rates and prolonged exposure may reduce active bacterial and fungal biomass, PAM application did not substantially or consistently affect bacterial structural diversity, richness, or evenness in this agricultural soil.
Mostrar más [+] Menos [-]Contribution of Arbuscular Mycorrhizal and Saprobe Fungi to the Aluminum Resistance of Eucalyptus globulus
2007
Arriagada, C. A. | Herrera, M. A. | Borie, F. | Ocampo, J. A.
Aluminum in acidic conditions is toxic to plants. Aluminum tolerance in some plant species has been ascribed to arbuscular mycorrhizal fungal symbiosis. In this study, the application of aluminum was found to inhibit mycelia development of saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi Glomus mosseae and Glomus deserticola in vitro. Several levels of aluminum were applied to Eucalyptus globulus plants and inoculated with arbuscular mycorrhizal fungi alone or together with both saprobe fungi. The application of 1,500 mg kg⁻¹ decreased the shoot and root dry weight, chlorophyll content and total P, Mg, and Ca concentrations in the shoot of E. globulus. However, both mycorrhizal fungi G. mosseae and G. deserticola inoculated alone increased the shoot dry weight of Eucalyptus, compared with a non- arbuscular mycorrhizal inoculated control treated with 1,500 mg kg⁻¹ of aluminum. When 1,500 mg kg⁻¹ of aluminum was applied, T. koningii increased the effect of G. deserticola on the shoot weight of eucalyptus, whereas with 3,000 mg kg⁻¹, shoot weight and arbuscular mycorrhizal colonization decreased in all treatments. With 1,500 mg kg⁻¹, the highest accumulation of aluminum in the shoot was obtained when G. deserticola was inoculated together with T. koningii. The possibility of manipulating an arbuscular mycorrhizal inoculation together with a saprobe fungus confers a high aluminum resistance in E. globulus. The effect of such combined inoculation is particularly important in some Chilean volcanic acid soils, mainly those which have been intensively cropped and are without lime addition, which facilitates the increase of phytotoxic aluminum species and limits their agricultural use. Therefore, such dual inoculation in field conditions deserves further investigation. Overall, the arbuscular mycorrhizal and saprobe fungi contribute to the increase in resistance of E. globulus to aluminium.
Mostrar más [+] Menos [-]