Refinar búsqueda
Resultados 1-10 de 495
The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe
2011
Stevens, Carly J. | Dupre, Cecilia | Dorland, Edu | Gaudnik, Cassandre | Gowing, David J.G. | Bleeker, Albert | Diekmann, Martin | Alard, Didier | Bobbink, Roland | Fowler, David | Corcket, Emmanuel | Mountford, J. Owen | Vandvik, Vigdis | Aarrestad, Per Arild | Muller, Serge | Dise, Nancy B. | Open University | Lancaster Environment Centre ; Lancaster University | University of Bremen | Universiteit Utrecht / Utrecht University [Utrecht] | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB) | Energy Research Centre of the Netherlands (ECN) | Radboud University [Nijmegen] | Natural Environment Research Council (NERC) | Department of Biology ; University of Washington [Seattle] | Norwegian Institute for Nature Research (NINA) | Université Paul Verlaine - Metz (UPVM) | Manchester Metropolitan University (MMU) | European Science Foundation; DfG (Germany); NERC (United Kingdom); NWO (The Netherlands); INRA; ADEME; Aquitaine Region (France)
International audience | A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2–44 kg N ha−1 yr−1) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.
Mostrar más [+] Menos [-]Nitrogen deposition threatens species richness of grasslands across Europe
2010
Stevens, Carly J. | Dupre, Cecilia | Dorland, Edu | Gaudnik, Cassandre | Gowing, David J.G. | Bleeker, Albert | Diekmann, Martin | Alard, Didier | Bobbink, Roland | Fowler, David | Corcket, Emmanuel | Mountford, J. Owen | Vandvik, Vigdis | Aarrestad, Per Arild | Muller, Serge | Dise, Nancy B. | Open University | Lancaster Environment Centre ; Lancaster University | University of Bremen | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB) | Department of Air Quality and Climate Change ; Energy Research Centre for the Netherlands | Radboud University [Nijmegen] | Natural Environment Research Council (NERC) | Department of Biology ; University of Washington [Seattle] | Norwegian Institute for Nature Research (NINA) | Centre National de la Recherche Scientifique (CNRS) | University of Manchester [Manchester]
International audience | Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2–44 kg N ha−1 yr−1) species richness showed a curvilinear response, with greatest reductions in species richness when deposition increased from low levels. This has important implications for conservation policies, suggesting that to protect the most sensitive grasslands resources should be focussed where deposition is currently low. Soil pH is also an important driver of species richness indicating that the acidifying effect of nitrogen deposition may be contributing to species richness reductions. The results of this survey suggest that the impacts of nitrogen deposition can be observed over a large geographical range. Atmospheric nitrogen deposition is reducing biodiversity in grasslands across Europe.
Mostrar más [+] Menos [-]Synergistic effects of Cd-loving Bacillus sp. N3 and iron oxides on immobilizing Cd and reducing wheat uptake of Cd
2022
Han, Hui | Wu, Xuejiao | Hui, Ruiqing | Xia, Xing | Chen, Zhaojin | Yao, Lunguang | Yang, Jianjun
Iron oxides and microorganisms are important soil components that profoundly affect the transformation and bioavailability of heavy metals in soils. Here, batch and pot experiments were conducted to investigate the immobilization mechanisms of Cd by Cd-loving Bacillus sp. N3 and ferrihydrite (Fh) as well as their impacts on Cd uptake by wheat and bacterial community composition in wheat rhizospheric soil. The results showed that the combination of strain N3 with Fh could immobilize more Cd compared to strain N3 and Fh, respectively. Furthermore, strain N3 facilitated Cd retention on Fh, which synergistically reduced the concentration of DTPA extracted Cd in the soil and decreased Cd content (57.1%) in wheat grains. Moreover, inoculation with strain N3 increased the complexity of the co-occurrence network of the bacterial community in rhizospheric soil, and the abundance of beneficial bacteria with multipel functions including heavy metal immobilization, dissimilatory iron reduction, and plant growth promotion. Overall, this study demonstrated the enrichment of strain N3 and iron oxides, together with increased soil pH, synergistically immobilized soil Cd, which strongly suggested inoculation with Cd-loving strains could be a promising approach to immobilize Cd and reduce wheat uptake of Cd, particular for soils rich in iron oxides.
Mostrar más [+] Menos [-]Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community
2022
Zhou, Xueqi | Shi, An | Rensing, Christopher | Yang, Jing | Ni, Wuzhong | Xing, Shihe | Yang, Wenhao
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%–148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1–21.4%, 29.1–42.7%,12.2–38.3% and 26.8–85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Mostrar más [+] Menos [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
Mostrar más [+] Menos [-]Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus
2022
Li, Weibin | Gan, Xiaoling | Jiang, Yuan | Cao, Fengfeng | Lü, Xiao-Tao | Ceulemans, Tobias | Zhao, Chuanyan
Human-induced nitrogen (N) and phosphorus (P) enrichment have profound effects on grassland net primary production (NPP) and species richness. However, a comprehensive understanding of the relative contribution of N vs. P addition and their interaction on grassland NPP increase and species loss remains elusive. We compiled data from 80 field manipulative studies and conducted a meta-analysis (2107 observations world-wide) to evaluate the individual and combined effects of N and P addition on grassland NPP and species richness. We found that both N addition and P addition significantly enhanced grassland above-ground NPP (ANPP; 33.2% and 14.2%, respectively), but did not affect total NPP, below-ground NPP (BNPP), and species evenness. Species richness significantly decreased with N addition (11.7%; by decreasing forbs) probably due to strong decreased soil pH, but not with P addition. The combined effects of N and P addition were generally stronger than the individual effects of N or P addition, and we found the synergistic effects on ANPP, and additive effects on total NPP, BNPP, species richness, and evenness within the combinations of N and P addition. In addition, N and P addition effects were strongly affected by moderator variables (e.g. climate and fertilization type, duration and amount of fertilizer addition). These results demonstrate a higher relative contribution of N than P addition to grassland NPP increase and species loss, although the effects varied across climate and fertilization types. The existing data also reveals that more long-term (≥5 years) experimental studies that combine N and P and test multifactor effects in different climate zones (particularly in boreal grasslands) are needed to provide a more solid basis for forecasting grassland community response and C sequestration response to nutrient enrichment at the global scale.
Mostrar más [+] Menos [-]Tracing the fate of phosphorus fertilizer derived cadmium in soil-fertilizer-wheat systems using enriched stable isotope labeling
2021
Bracher, Christoph | Frossard, Emmanuel | Bigalke, Moritz | Imseng, Martin | Mayer, J. (Jochen) | Wiggenhauser, Matthias
Applying mineral phosphorus (P) fertilizers introduces a considerable input of the toxic heavy metal cadmium (Cd) into arable soils. This study investigates the fate of P fertilizer derived Cd (Cddff) in soil-wheat systems using a novel combination of enriched stable Cd isotope mass balances, sequential extractions, and Bayesian isotope mixing models. We applied an enriched ¹¹¹Cd labeled mineral P fertilizer to arable soils from two long-term field trials with distinct soil properties (a strongly acidic pH and a neutral pH) and distinct past mineral P fertilizer application rates. We then cultivated wheat in a pot trial on these two soils. In the neutral soil, Cd concentrations in the soil and the wheat increased with increasing past mineral P fertilizer application rates. This was not the case in the strongly acidic soil. Less than 2.3% of freshly applied Cddff was taken up by the whole wheat plant. Most of the Cddff remained in the soil and was predominantly (>95% of freshly applied Cddff) partitioned into the easily mobilizable acetic acid soluble fraction (F1) and the potentially mobile reducible fraction (F2). Soil pH was the determining factor for the partitioning of Cddff into F1, as revealed through a recovery of about 40% of freshly applied Cddff in F1 in the neutral pH soil compared with about 60% in the strongly acidic soil. Isotope mixing models showed that F1 was the predominant source of Cd for wheat on both soils and that it contributed to over 80% of the Cd that was taken up by wheat. By tracing the fate of Cddff in entire soil-plant systems using different isotope source tracing approaches, we show that the majority of Cddff remains mobilizable and is potentially plant available in the subsequent crop cycle.
Mostrar más [+] Menos [-]Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb
2021
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Li, Xiuying | Ji, Puhui
Cadmium (Cd) and lead (Pb) are toxic heavy metals that impact human health and biodiversity. Removal of Cd/Pb from contaminated soils is a means for maintaining environmental sustainability and biodiversity. In this study, we applied a newly modified material fly ash (NA), zeolite (ZE), and fly ash (FA) to the paddy soils and evaluated the effects of Cd/Pb accumulation in rice via a one-year field experiment. The results showed that the application of NA and ZE enhanced the soil pH and nutrients to a large extent and reduced the availability of Cd/Pb in soil. The Cd and Pb concentrations in rice grains decreased by 32.8% and 62.9%, respectively, with the NA treatments. Similarly, the application of ZE reduced the Cd and Pb concentrations in rice grains by a factor of 27.9% and 63.5%, respectively, which indicates that the amendments can promote the transfer of Cd and Pb from acid-exchangeable fraction to oxidizable and residual fractions. The Cd/Pb showed a significant positive correlation to other metal ions and a negative correlation to the nutrients. Generally, the application of NA and ZE was effective in reducing Cd/Pb accumulation and improving rice yield. Moreover, the NA was more cost-effective than ZE. Hence, this study proves that NA may be a better amendment for remediation of Cd/Pb contaminated soils.
Mostrar más [+] Menos [-]Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability
2021
Hiller, Edgar | Jurkovič, Ľubomír | Faragó, Tomáš | Vítková, Martina | Tóth, Roman | Komárek, Michael
Soils containing a large proportion of industrial waste can pose a health risk due to high environmentally available concentrations of toxic metal(loid)s. Nano zero-valent iron (nZVI) and amorphous manganese oxide (AMO) were applied as immobilising amendments (1 wt%) to soils with different industrial origin of As and Sb, and leaching of As, Sb, Pb, and Zn was investigated using a single extraction with deionised water. The different industrial impact was reflected in the mineralogy, chemical composition and pH of these soils. Water-soluble As ratios positively correlated with pH in all experimental treatments. A significant decrease of water-soluble As ratios was observed in all nZVI-amended soils (~65–93% of the control) except for one sample with the lowest solution pH. Nano zero-valent iron was also successful in Sb immobilisation (~76–90% of the control). Highly variable results were obtained for AMO, which only led to a decrease of water-soluble As in soils with solution pH of ≥7 (~70–80% of the control), probably due to lower stability of AMO in acidic conditions. In each case, nZVI was more efficient at decreasing water-soluble As ratios than AMO. Dissolved Pb concentrations remained unchanged after the application of nZVI and AMO, and the decrease of Zn leaching using AMO was controlled mainly by soil pH increase induced by its application. According to the calculated saturation indices, tripuhyite (FeSbO₄) was predicted to be the key mineral controlling Sb solubility in mine soils. Secondary Fe (hydr)oxides either originally present or newly formed due to nZVI oxidation were instrumentally identified at different stages of their transformation and metal(loid) retention. To conclude, nZVI is suitable for application to contaminated soils at a wide pH range, while the use of AMO for decreasing As leaching is limited to soils with pH ≥ 7.
Mostrar más [+] Menos [-]Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils
2021
Yin, Naiyi | Zhao, Yongli | Wang, Pengfei | Du, Huili | Yang, Mei | Han, Zeliang | Chen, Xiaochen | Sun, Guoxin | Cui, Yanshan
To identify the role of gut microbiota in human health risk assessment, the bioaccessibility of heavy metals in 14 soil samples were determined in simulated gastrointestinal fluids. Compared to the small intestinal phase, the bioaccessibility values of the colon phase varied, either increased by 3.5-fold for As, by 2.2-fold for Cr, and by 1.6-fold for Ni, or reduced by 4.4-fold for Cu, respectively. The colon incubation with adult gut microbiota yielded higher bioaccessibility value of As (1.3 times) and Fe (3.4 times) than that of the child in most soil samples. Colon bioaccessibility was about 60% greater of Cd for the adult and 30% higher of Cr for the child. Congruent data on the bioaccessibility of Cu and Ni was observed. In addition, correlation analysis indicated that in vitro bioaccessibility was primarily related to total concentrations of heavy metals in soils, followed by soil pH and active Fe/Mn oxide. Significantly, risk assessment calculated based on colon bioaccessibility indicated that the target hazard quotient (THQ > 1) of As was presented in 3 soil samples for the adult (1.05–3.35) and in 9 soil samples for the child (1.06–26.93). The hazard index (HI) of the child was 4.00 on average, greater than that of the adult (0.62), primarily due to the contribution of As and Cd. It suggested non-carcinogenic risks are likely to occur in children through typical hand-to-mouth behavior. The adjustment of colon bioaccessibility will result in more accurate risk assessment of human exposure to heavy metals from oral ingestion of contaminated soils.
Mostrar más [+] Menos [-]