Refinar búsqueda
Resultados 1-10 de 207
Clean water, sanitation and under-five children diarrhea incidence: Empirical evidence from the South Africa’s General Household Survey Texto completo
2021
Omotayo, Abiodun Olusola | Olagunju, Kehinde Oluseyi | Omotoso, Abeeb Babatunde | Ogunniyi, Adebayo | Otekunrin, Olutosin Ademola | Daud, Adebola Saidat
Organophosphate pesticides in South African eutrophic estuaries: Spatial distribution, seasonal variation, and ecological risk assessment Texto completo
2022
Olisah, Chijioke | Rubidge, Gletwyn | Human, Lucienne R.D. | Adams, Janine B.
The seasonal variation, spatial distribution, and ecological risks of thirteen organophosphate pesticides (OPPs) were studied in the Sundays and Swartkops estuaries in South Africa. Ten pesticides were detected in surface water samples from both estuaries, while all OPPs were detected in sediments. The highest concentration of OPPs (18.8 μg pyrazophos L⁻¹) was detected in surface water samples from Swartkops Estuary, while 48.7 μg phosalone kg⁻¹ dw was the highest in sediments collected from Sundays Estuary. There was no clear seasonal pattern in OPPs occurrence in surface water from both systems. However, their occurrence in sediments was in the following order: winter > autumn > summer > spring, perhaps indicating major pesticide input in the winter seasons. Results from ecological risk assessment showed that pyraclofos and chlorpyrifos (CHL) in surface water from both systems are respectively likely to cause high acute and chronic toxicity to fish (risk quotient – RQ > 1). For sediments of both estuaries, the highest acute and chronic RQs for fish were calculated for isazophos and CHL respectively. The majority of the detected OPPs in sediments posed potential high risks to Daphnia magna from both systems. These results suggest that these aquatic organisms (fish, and Daphnia), if present in the studied estuaries, can develop certain forms of abnormalities due to OPP exposure. To this end, proper measures should be taken to reduce OPP input into the estuarine systems.
Mostrar más [+] Menos [-]Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context Texto completo
2021
Horak, Ilzé | Horn, Suranie | Pieters, Rialet
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Mostrar más [+] Menos [-]Occurrence and distribution of PAHs and microbial communities in nearshore sediments of the Knysna Estuary, South Africa Texto completo
2021
Liu, Xinran | Liu, Min | Zhou, Limin | Hou, Lijun | Yang, Yi | Wu, Dianming | Meadows, Michael E. | Li, Zhanhai | Tong, Chunfu | Gu, Jinghua
This study investigated the polycyclic aromatic hydrocarbons (PAHs) occurrence, and their impact on the microbial community and PAH-degrading genera and genes in the Knysna Estuary of South Africa. The results reveal that the estuary exhibits low PAH levels (114.1–356.0 ng g⁻¹). Ignavibacteriae and Deferribacteres, as well as Proteobacteria and Bacteroidetes, are keystone phyla. Among measured environmental factors, total organic carbon (TOC), nutrients such as nitrite and nitrate, metals as Al, Cr, Cu, Ni, Pb and Zn, and environmental properties (pH and salinity) are primary contributors to structuring the bacterial community assemblage. The abundance of alpha subunit genes of the PAH-ring hydroxylating dioxygenases (PAH-RHDα) of Gram-negative bacteria lies in the range of (2.0–4.2) × 10⁵ copies g⁻¹, while that of Gram-positive bacteria ranges from 3.0 × 10⁵ to 1.3 × 10⁷ copies g⁻¹. The PAH-degrading bacteria account for up to 0.1% of the bacterial community and respond mainly to nitrate, TOC and salinity, while PAHs at low concentration are not significant influencing factors. PAH degraders such as Xanthomonadales, Pseudomonas, and Mycobacterium, which play a central role in PAH-metabolization coupled with other biogeochemical processes (e.g. iron cycling), may contribute to maintaining a healthy estuarine ecosystem. These results are important for developing appropriate utilization and protection strategies for pristine estuaries worldwide.
Mostrar más [+] Menos [-]Short term seasonal effects of airborne fungal spores on lung function in a panel study of schoolchildren residing in informal settlements of the Western Cape of South Africa Texto completo
2020
Olaniyan, Toyib | Dalvie, Mohamed Aqiel | Röösli, Martin | Naidoo, Rajen N. | Künzli, Nino | de Hoogh, Kees | Berman, Dilys | Parker, Bhawoodien | Leaner, Joy | Jeebhay, Mohamed F.
The individual effects of biological constituents of particulate matter (PM) such as fungal spores, on lung function in children are not well known. This study investigated the seasonal short-term effect of daily variation in Alternaria and Cladosporium fungal spores on lung function in schoolchildren.This panel study evaluated 313 schoolchildren in informal settlements of the Western Cape of South Africa, exposed to spores of two commonly encountered fungi, Alternaria and Cladosporium species. The children provided forced-expiratory volume in 1-s (FEV₁) and peak-expiratory flow (PEF) measurements thrice daily for two consecutive school-weeks in summer and winter. Daily PM₁₀ levels, from a stationary ambient air quality monitor and fungal spore levels using spore traps were measured in each study area throughout the year. The effects of Alternaria and Cladosporium spores, on lung function were analysed for lag periods up to five-days, adjusting-for PM₁₀, other pollen exposures, study area, and other host and meteorological factors. Same-day exposure-response curves were computed for both fungal species.There was more variability in Alternaria spores level with noticeable peaks in summer. There were consistent lag-effects for Alternaria on PEF compared to Cladosporium, with the largest PEF deficit observed in winter (mean deficit: 13.78 L/min, 95%CI: 24.34 to −3.23 L/min) per 10spores/m³ increase in Alternaria spores on lag day-2. Although there were no observable lag-effects for Alternaria and Cladosporium on FEV₁, same-day effects of Cladosporium spores on FEV₁ was present across both seasons. Threshold effects of Alternaria on both PEF and FEV₁ deficits were apparent at levels of 100 spores/m³, but could not be explored for Cladosporium beyond the levels observed during the study.The study provides evidence for the independent effects of daily exposure to ambient fungal spores of Alternaria and Cladosporium on lung function deficits, more especially in winter for PEF.
Mostrar más [+] Menos [-]Fate, occurrence and potential adverse effects of antimicrobials used for treatment of tuberculosis in the aquatic environment in South Africa Texto completo
2019
Magwira, Cliff Abdul | Aneck-Hahn, Natalie | Taylor, M. B. (Maureen Beatrice)
The consumption of tonnes of anti-tubercular and other anti-microbial compounds for the control of the tuberculosis epidemic and other opportunistic diseases associated with human immunodeficiency virus presents tuberculosis-endemic countries such as South Africa, with a problem regarding the occurrence and fate of these compounds in the aquatic environment. The majority of these compounds are not readily degradable and could persist in the aquatic environment with potential detrimental effect on the aquatic microbiota ecosystem, development and dissemination of anti-microbial resistance as well as chronic toxicity in humans due to long-term exposure. This review summarises and discusses the occurrence, fate and potential adverse effects of the commonly administered anti-tubercular compounds in the aquatic environment in tuberculosis-endemic countries and South Africa in particular. It further attempts to identify information gaps in the literature regarding anti-tubercular compounds in the environment that needs further investigation so that their risk can be comprehensively assessed and impact mitigated.
Mostrar más [+] Menos [-]Brominated and organophosphorus flame retardants in South African indoor dust and cat hair Texto completo
2019
Brits, Martin | Brandsma, Sicco H. | Rohwer, Egmont R. | De Vos, Jayne | Weiss, Jana M. | Boer, Jacob de
Flame retardants (FRs), such as brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs), are diverse groups of compounds used in various products related to the indoor environment. In this study concentrations of eight polybrominated diphenyl ethers (PBDEs), two alternative BFRs and ten OPFRs were determined in indoor dust (n = 20) and pet cat hair (n = 11) from South Africa. The OPFRs were the major FRs, contributing to more than 97% of the total FR concentration. The median Ʃ₁₀OPFRs concentrations were 44,800 ng/g in freshly collected dust (F-dust), 19,800 ng/g in the dust collected from vacuum cleaner bags (V-dust), and 865 ng/g in cat hair (C-hair). Tris(1-chloro-2-propyl) phosphate (TCIPP) was the dominant OPFR in the dust samples with median concentrations of 7,010 ng/g in F-dust and 3,590 ng/g in V-dust. Tris(2-butoxyethyl) phosphate (TBOEP) was the dominant OPFR in C-hair, with a median concentration of 387 ng/g. The concentrations of Ʃ₈PBDEs were higher in F-dust than in V-dust. BDE209 was the dominant BFR in all three matrices. Bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5- tetrabromobenzoate (EH-TBB) showed notable contributions to the BFR profile in cat hair. A worst-case dust exposure estimation was performed for all analytes. The estimated TCIPP daily intake through dust ingestion was up to 1,240 ng/kg bw for toddlers. The results indicate that OPFRs are ubiquitous in South African indoor environment. Indoor dust is a major source of human exposure to environmental contaminants. This can for example occur through hand-to-mouth contact of toddlers, and is an important route of exposure to currently used FRs accumulated on dust particles. The presence of FRs, in particular high concentrations of OPFRs, suggests that children and indoor pet cats may have greater exposure to FRs than adults.
Mostrar más [+] Menos [-]Occurrence of enterococci harbouring clinically important antibiotic resistance genes in the aquatic environment in Gauteng, South Africa Texto completo
2019
Hamiwe, Thabo | Kock, Marleen M. | Magwira, Cliff A. | Antiabong, John F. | Ehlers, Marthie M.
The development of antibiotic resistance and dissemination of its determinants is an emerging public health problem as it compromises treatment options of infections that were, until recently, treatable. Investigation of outbreaks of vancomycin resistant enterococci (VRE) suggests that the environment serves as a significant reservoir for antibiotic resistance genes (ARGs). However, there is a paucity of data regarding the presence of ARGs in the water sources in South Africa. In this study, water samples collected from wastewater treatment plants (WWTPs), surface water and hospital sewage were screened for enterococci harbouring genes conferring resistance to four classes of antibiotics. Enterococci isolates harbouring ARGs were detected in raw influent and treated wastewater discharge from WWTPs and hospital sewage water. Plasmid and transposon encoded ermB (macrolide), tetM and tetL (tetracycline) as well as aph(3’)-IIIa (aminoglycosides) genes were frequently detected among the isolates, especially in E. faecalis. The presence of enterococci harbouring ARGs in the treated wastewater suggest that ARGs are discharged into the environment where their proliferation could be perpetuated. Among the enterococci clonal complexes (CCs) recovered from wastewater were E. faecium CC17 (ST18), which is frequently associated with hospital outbreaks and a novel E. faecalis sequence type (ST), ST780.
Mostrar más [+] Menos [-]HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue Texto completo
2019
Vijgen, John | de Borst, Bram | Weber, Roland | Stobiecki, Tomasz | Forter, Martin
During the last 70 years 1, 2, 3, 4, 5, 6-Hexachlorocyclohexane (HCH) has been one of the most extensively used pesticides. Only the gamma-isomer has insecticidal properties. For the marketing of gamma-HCH (lindane) the other 85% HCH isomers which are formed as by-products during HCH production had to be separated and became finally hazardous waste. For each tonne of lindane 8–12 tonnes of waste HCH isomers were produced and production of the approximately 600,000 t of lindane has therefore generated 4.8 to 7.2 million tonnes of HCH/POPs waste. These waste isomers were mostly buried in uncontrolled dumps at many sites around the world. The stockpiles and the large contaminated sites can be categorized as “mega-sites”. Countries with HCH legacy problems include Albania, Argentina, Austria, Azerbaijan, Brazil, China, Croatia, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Russia, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, Ukraine and the USA.As lindane and alpha- and beta-HCH have been listed as POPs in the Stockholm Convention since August 2010, the problem of stockpiles of HCH waste is now documented and globally acknowledged.This article describes briefly the legacy of HCH and lindane that has been created. Three of the mega-sites are being discussed and demonstrate the increase in pollution footprint over time. Recent developments in the EU (including the Sabinanigo project in Aragon/Spain) and on a global level are presented. A short overview is given on lack of activities and on actions of countries within their obligations as Parties of the Stockholm Convention. Furthermore, current country activities supported by the Global Environment Facility (GEF), the “financing mechanism” of the convention, are listed. Finally, conclusions and recommendations are formulated that will contribute to the solution of this problem over the next 25 years.
Mostrar más [+] Menos [-]Environmental risk assessment of triclosan and triclocarban from personal care products in South Africa Texto completo
2018
Musee, N.
Trends in the widespread use of personal care products (PCPs) containing triclosan (TCS) and triclocarban (TCC) have led to continuous emissions of these chemicals into the environment. Consequently, both chemicals are ubiquitously present at high concentrations in the aquatic systems based on widely reported measured environmental concentration (MECs) data in different environmental systems (e.g. freshwater) worldwide, especially in developed countries. In developing countries, however, lack of MECs data is a major issue, and therefore, inhibits effective risk assessment of these chemicals. Herein, TCS and TCC releases from personal care products (PCPs) were quantified, using a modelling approach to determine predicted environmental concentrations (PECs) in wastewater, freshwater, and soils, and likely risk(s) were estimated by calculating risk quotient (RQs). TCS and TCC in freshwater had RQs >1 based on estimated PECs with wide variations (≈2–232) as performed across the three dilutions factors (1, 3, and 10) considered in this study; an indicator of their likely adverse effect on freshwater organisms. In untreated and treated wastewater, TCS RQs values for bacteria were >1, but <1 for TCC, implying the former may adversely affect the functioning of wastewater treatment plants (WWTPs), and with no plausible impacts from the latter. In terrestrial systems, RQ results for individual chemicals revealed no or limited risks; therefore, additional investigations are required on their toxicity, as effects data was very limited and characterised by wide variations. Future national monitoring programs in developing countries should consider including TCS and TCC as the results suggest both chemicals are of concern to freshwater, and TCS in WWTPs. Potential risks of their metabolites remain unquantified to date.
Mostrar más [+] Menos [-]