Refinar búsqueda
Resultados 1-6 de 6
Associations between bacterial communities and microplastics from surface seawater of the Northern Patagonian area of Chile
2022
Aguila-Torres, Patricia | Gonzalez, Mauricio | Maldonado, Jonathan E. | Miranda, Richard | Zhang, Liqing | González-Stegmaier, Roxana | Rojas, Luis Antonio | Gaete, Alexis
The presence of microplastics in oceans and coastlines has increased during recent years due anthropogenic activities and represents a serious environmental problem. The establishment and assembly of microbial communities in these microplastics, specifically located near aquaculture activities, is not well understood. In this study, we analyzed unique and core members of bacterial communities attached to microplastics collected from three coastal environments of the South Pacific, which represent low, medium and high anthropogenic activity derived from the aquaculture industry. Microplastics were analyzed with Fourier-transform infrared spectroscopy, scanning electron microscopy, and next-generation sequencing to assess the prevailing microplastics types, and to characterize microbial communities attached to them. We identified four main types of microplastics (polypropylene, polyethylene, nylon and polystyrene) and 3102 Operational Taxonomic Units (OTUs) at the sampled sites, which were dominated by the phylum Cyanobacteria, Bacteroidetes and Proteobacteria (mainly Alpha and Gammaproteobacteria). Similarity index analysis showed that bacterial communities in microplastics differed from those found in the surrounding seawaters, and also that they varied among locations, suggesting a role of the environment and level of anthropogenic activities on the plastisphere taxa. Despite this difference, 222 bacterial OTUs were shared among the three sites representing between 34 and 51% of OTUs of each sampled site, and thus constituted a core microbiome of microplastics. Comparison of the core microbiome with bacterial communities of the surrounding seawater suggested that the plastisphere constituted a selective habitat for diverse microbial communities. Computational predictions also provided evidence of significantly enriched functions in the core microbiome. Co-occurrence networks revealed that putative ecological interactions among microplastics OTUs was dominated by positive correlations. To the best of our knowledge, this is the first study that evaluated the composition of microbial communities found in microplastics from the Patagonia region of the Southern Pacific Ocean.
Mostrar más [+] Menos [-]Aquatic contaminants in Solomon Islands and Vanuatu: Evidence from passive samplers and Microtox toxicity assessment
2021
Smith, A.J. | Barber, Yehonatan | Davis, S. | Jones, C. | Kotra, K.K. | Losada, S. | Lyons, B.P. | Mataki, M. | Potter, K.D. | Devlin, M.J.
Water Quality issues in many Pacific countries are rising, with the increase in coastal populations and associated urban runoff but management requires contamination issues in the aquatic environment to be identified and prioritised. In Vanuatu and Solomon Islands there are few laboratories and resources to assess for the presence or impact of complex chemical contaminants. The extent and impact of chemical contamination of the marine and coastal environment is poorly described.Passive chemical samplers were used to measure a range of aquatic pollutants around the capital cities, Honiara (Solomon Islands) and Port Vila (Vanuatu). We detected a range of chemicals indicative of agricultural and industrial contamination and a few sites had concerning concentrations of specific hydrocarbons and pesticides. The rapid ecotoxicology test, Microtox, indicated toxic impacts in rivers, coastal sites and urban drains This work provides new data on chemical contamination and possible impacts of that contamination for both countries. The techniques could be applied widely across the region to generate critical data for environmental management, guide monitoring efforts and measure the impact of policy or land-use changes.
Mostrar más [+] Menos [-]A temporal assessment of microplastics distribution on the beaches of three remote islands of the Yasawa archipelago, Fiji
2022
Al Nabhani, Khadija | Salzman, Scott | Shimeta, Jeff | Dansie, Andrew | Allinson, Graeme
This is the first study that investigated the presence, distribution, and composition of microplastics, MPs (1-5 mm) on beaches in the Yasawa Islands, Fiji. A temporal assessment over three years on six beaches was undertaken to investigate different beach traits on MP abundance. Average MP concentration was 4.5 ± 11.1 MPs·m⁻² with significantly higher concentrations were found on east-facing beaches than west (p < 0.001), and higher on the storm line compared to the high tide line (p < 0.001). No difference was found between tourist and local beaches (p = 0.21). These results demonstrate the role of current-driven ocean transport of plastic pollution in this part of The South Pacific. ATR FT-IR analysis showed that across all sites 34 % of MPs were polypropylene (PP), 33 % polystyrene (PS), 25 % polyethylene (PE), and 8 % other polymer types. Further studies are needed to assess the potential impacts of MPs on Fiji's coral reefs and marine life.
Mostrar más [+] Menos [-]Quantification and characterization of microplastics in commercial fish from southern New Zealand
2022
Clere, Isabella K. | Ahmmed, Fatema | Remoto, Peter III J.G. | Fraser-Miller, Sara J. | Gordon, Keith C. | Komyakova, Valeriya | Allan, Bridie J.M.
Plastics are ubiquitous throughout global marine ecosystems. To date, there has been limited research on the prevalence of microplastic ingestion by commercially important marine fish in the southern hemisphere, particularly in the South Pacific. Therefore, this research aimed to quantify ingested microplastics from ten commercially important fish species from southern New Zealand using microscopy and Raman spectroscopy. Overall, we found evidence of microplastic ingestion in 75 % of fish, with an average of 2.5 individual particles per fish. Microplastic fibers were the most commonly ingested. The most common colored microplastics ingested were blue, black and red, and 99.68 % of plastics identified were smaller than 5 mm. Raman spectroscopy of plastics recovered from nine fish species found polyethylene and polypropylene to be the most common plastic polymers ingested. Further research is necessary to ascertain the human ecological and health risks involved when exposed to microplastics through eating plastic contaminated fish.
Mostrar más [+] Menos [-]The effectiveness of legislative and voluntary strategies to prevent ocean plastic pollution: Lessons from the UK and South Pacific
2021
Tudor, David T. | Williams, Allan T.
The islands of the South Pacific contribute a fraction of the mis-managed plastics in the world's ocean, yet the region is one of the main recipients of its impacts. Based on expert interviews and a review of current strategies to prevent marine plastic pollution in six countries (Australia, New Zealand, Fiji, Tonga, Vanuatu, United Kingdom), this paper identifies several interventions – legislative, financial, voluntary - which governments, organisations and individuals can learn from. Both voluntary and statutory consumer-based behaviour change campaigns are well developed and somewhat successful in several countries. While sub-national policies do not inhibit progress, they are not optimal. Harmonisation across the territories of federal and devolved systems is beneficial, such as container return schemes, levies, and bans. Vanuatu has displayed high ambition, and the challenges in achieving this serve as a case study. A coordinated global strategy with associated legislation aimed at tackling plastic pollution is critical.
Mostrar más [+] Menos [-]Modelling pollution dispersal around Solomon Islands and Vanuatu
2020
Graham, Jennifer A. | Haverson, David | Bacon, John
To assess potential dispersion of pollutants around Honiara, Solomon Islands, and Port Vila, Vanuatu, 3D ocean circulation models were developed using Telemac-3D. A series of scenarios then explore the vulnerability of the system and test potential control measures. Results show that high coastal concentrations are most likely during the wet season, with increased volumes of discharge as well as favourable wind speed and direction. Buoyant plumes flow along the coastline, and high concentrations build up in enclosed bays. Control measures tested focus on consolidating existing outflows at depth off-shore. This results in an overall reduction of surface concentrations along the coastline. However, the reduction is dependent on the depth, off-shore positioning, and volume of outflow. With increased concentrations then found at depth, the subsequent impact on off-shore and benthic ecosystems would also need to be considered.
Mostrar más [+] Menos [-]