Refinar búsqueda
Resultados 1-10 de 76
Chemical Speciation, Bioavailability and Risk Assessments of Potentially Toxic Metals in Rainwaters as Indicators of Air Pollution Texto completo
2023
Adegunwa, Abiodun | Adebiyi, Festus | Asubiojo, Olabode | Ore, Odunayo
Heavy metals contamination of rainwater is a function of the adsorbed metals present in the particulates of the atmosphere in which the rain was formed from and rainwater chemistry is an alternative way of monitoring urban air pollution for predominant metal species. Three distinct sampling sites (residential, industrial and commercial) were investigated in the south western part of Nigeria for one year. After acid digestion, quantification was done using a double-beam Atomic Absorption Spectrophotometer (AAS). The obtained results showed that heavy metals were predominantly present as free metal ion in the commercial and industrial areas but Mn and As mainly occurred in the suspended fraction. Residential area presented major fractions as bound to organic complexes except Cu and Cd which were principally available as suspended fraction. The health risks associated with the intake of the studied rainwaters indicated susceptibility to possible carcinogens upon consumption due to total RI > 10-4. Ecological risk assessment equally shown a very high level of ecological risks related with the metals due to RI ˃ 600. Sequel upon this, there is need for better sensitization of the citizenry to the sources and control of these pollutants.
Mostrar más [+] Menos [-]Effect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles Texto completo
2020
Shirzadeh, M. | Sepehr, E. | Rasouli Sadaghiani, M. H. | Ahmadi, F.
The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch experiments, fitting various isotherm models (Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich) to the equilibrium data. Saturation indices (SI) of TiO2 and γ-Al2O3 nanosorbents indicate that adsorption is a predominant mechanism for Cd (II) removal from aqueous solution, giving maximum Cd (II) adsorption rates of 3348 and 1173 mg/kg for TiO2 and γ-Al2O3 nanoparticles, respectively, both obtained at the highest pH level (pH = 8) as well as the highest initial Cd (II) concentration (equal to 80 mg/ L). Cadmium removal efficiency with TiO2 and γ-Al2O3 nanoparticles has increased by raising pH from 6 to 8. The Freundlich adsorption isotherm model could fit the experimental equilibrium data well at different pH levels. Also, it has been revealed that cadmium adsorption drops as the ionic strength is increased. The maximum Cd (II) adsorption (1625 mg/kg) has been attained at 0.01 M ionic strength in the presence of NaCl. Thermodynamic calculations demonstrate the spontaneous nature of Cd (II) adsorption by TiO2 and γ-Al2O3 nanoparticles. The former (TiO2) have high adsorption capacities, suggesting they are probably effective metal sorbents, compared to the latter (γ-Al2O3).
Mostrar más [+] Menos [-]Speciation of four heavy metals in agricultural soils around DraaLasfarmine area in Marrakech (Morocco) Texto completo
2015
Yassir, Barkouch | Alain, Pineau
This study was carried out to 1. determine spatial variations of heavy metal deposition in agricultural soils of two rural communities (OuledBouAicha and Tazakourte) of about 5790 ha in a mining area near Marrakech city in Morocco; 2. to assess the extent of metallic pollution generated by the mining activity and; 3. to identify the key mechanism responsible for this contamination and its relation to mining activity. Soil pollution assessment was carried out on one hand by measurement of the total metal concentration and on the other hand by studying four heavy metals speciation of the studied soils. The chemical forms of four heavy metals in soils around DraaLasfar mine were studied by determining soil Cd, Cu, Pb and Zn species using standard solvent extraction and Atomic Absorption Spectrophotometric techniques. The chemical pools of the metals indicated that the metals were distributed into six fractions with most of them residing in the non-residual fractions thus suggesting how readily the metals are released into the environment. Considering that the metals occur in the most available forms, we suggested that it is most likely that the metals must have been derived from anthropogenic sources especially from the mining activity in the studied region.
Mostrar más [+] Menos [-]Vulnerability and tolerance to nickel of periphytic biofilm harvested in summer and winter Texto completo
2022
Laderriere, Vincent | Morin, Soizic | Eon, Mélissa | Fortin, Claude | Centre Eau Terre Environnement [Québec] (INRS - ETE) ; Institut National de la Recherche Scientifique [Québec] (INRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Nunavik
International audience | Metals are naturally present in freshwater ecosystems but anthropogenic activities like mining operations represent a long-standing concern. Metals released into aquatic environments may affect microbial communities such as periphytic biofilm, which plays a key role as a primary producer in stream ecosystems. Using two 28-day microcosm studies involving two different photoperiods (light/dark cycle of 16/8 vs 8/16), the present study assessed the effects of four increasing nickel (Ni) concentrations (0-6 mu M) on two natural biofilm communities collected at different seasons (summer and winter). The two communities were characterized by different structural profiles and showed significant differences in Ni accumulated content for each treatment. For instance, the biofilm metal content was four times higher in the case of summer biofilm at the highest Ni treatment and after 28 days of exposure. Biomarkers examined targeted both heterotrophic and autotrophic organisms. For heterotrophs, the 8-glucosidase and 8-glucosaminidase showed no marked effects of Ni exposure and were globally similar between the two communities suggesting low toxicity. However, the photosynthetic yield confirmed the toxicity of Ni on autotrophs with maximum inhibition of 81 +/- 7% and 60 +/- 1% respectively for the summer and winter biofilms. Furthermore, biofilms previously exposed to the highest long-term Ni con-centration ([Ni2+] = 6 mu M) revealed no acute effects in subsequent toxicity based on the PSII yield, suggesting a tolerance acquisition by the phototrophic community. Taken together, the results suggest that the biofilm response to Ni exposure was dependent of the function considered and that descriptors such as biofilm metal content could be seasonally dependent, information of great importance in a context of biomonitoring.
Mostrar más [+] Menos [-]Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing Texto completo
2022
Bars, Maureen Le | Legros, Samuel | Levard, Clément | Chevassus-Rosset, Claire | Montes, Mélanie | Tella, Marie | Borschneck, Daniel | Guihou, Abel | Angeletti, Bernard | Doelsch, Emmanuel | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | ANR-15-CE34-0003,DIGESTATE,Diagnostic des traitements des déchets et comportement des contaminants dans l'environnement(2015) | European Project: 795614,Marie Skodowska-Curie agreement
Partie B | International audience | Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68 Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68 ZnS. This combination was crucial to highlight the dissolution of nano-68 ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.
Mostrar más [+] Menos [-]X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena Texto completo
2021
Pons, Marie-Laure | Collin, Blanche | Doelsch, Emmanuel | Chaurand, Perrine | Fehlauer, Till | Levard, Clément | Keller, Catherine | Rose, Jérôme | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
International audience | It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg.kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Mostrar más [+] Menos [-]Long-term fate of exogenous metals in a sandy Luvisol subjected to intensive irrigation with raw wastewater Texto completo
2007
Dère, Christelle | Lamy, Isabelle | Jaulin, Anne, A. | Cornu, Sophie, S. | Unité de recherche Science du Sol (USS) ; Institut National de la Recherche Agronomique (INRA) | Unité de Science du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | From 1899 to 2002, sandy Luvisol in the Paris region has been intensively irrigated with raw wastewater, resulting in major soil pollution by metallic trace elements (MTE). To identify the soil phases implicated in retaining these metals, sequential extractions were performed on a solum irrigated with untreated wastewater and another reference solum. The endogenous and exogenous fractions of MTE in the contaminated soil were discriminated using correlations between MTE and major elements defined from unpolluted soils of the area. In the contaminated soil no exogenous lead and chromium are present below the surface horizon, whereas exogenous zinc and copper are found down to the base of the solum. The endogenous MTE are mainly found in the residual fraction. Exogenous MTE appear to be associated with organic matter in the surface horizon, and exogenous zinc seems to be readsorbed on iron and manganese oxyhydroxides in the underlying horizons. After 100 years of intensive irrigation with wastewater, no exogenous Pb and Cr are found in the subsoil, while exogenous Zn and Cu are found down to the base of the solum, mostly readsorbed.
Mostrar más [+] Menos [-]The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter Texto completo
2022
Liu, Weijie | Hu, Tianpeng | Mao, Yao | Shi, Mingming | Cheng, Cheng | Zhang, Jiaquan | Qi, Shihua | Chen, Wei | Xing, Xinli
Identifying the bioavailability and release-desorption mechanism of heavy metals (HMs) in soil is critical to understand the release risk of HMs. Simultaneously, the mechanistic investigation of affecting the bioavailability of HMs in soil is necessary, such as the grain-size distribution and soil mineralogy. Herein, the bioavailability of HMs (Cu, Cd, Ni, Pb, and Zn) in different area soils near a typical copper-smelter was evaluated by the sequential extraction technique (BCR), diffusive gradients in thin-films (DGT), and DGT-induced fluxes in sediments (DIFS) model. Results showed that the HMs proportion of the residual fraction in all soils was the highest. The average bioavailability concentration (CDGT) of Cu and Cd in industrial soil was the highest, with 45.12 μg· L⁻¹ and 9.06 μg· L⁻¹. The result of DIFS model revealed that the decreased order of the mean value of desorption rate constant (K₋₁) was Cd > Zn > Ni > Cu > Pb, 5.91 × 10⁻⁵, 4.96 × 10⁻⁵, 2.89 × 10⁻⁵, 9.64 × 10⁻⁶, and 8.69 × 10⁻⁶, respectively. According to the spatial distribution of release potential (R-value), the release potential of labile-Cu in agricultural soil was the highest, which was mainly attributed to fertilizer application in farmland. Simultaneously, the reduced hydroxyl was also related to the agricultural activities, resulting in the weakened adsorption capacity of HMs by soil. Redundancy analysis (RDA) results showed that the bioavailability of Cd, Ni, and Zn was mainly driven by soil pH, while the bioavailability of Cu and Pb was primarily driven by dissolved organic carbon (DOC). Meanwhile, carbonate minerals had a positive correlation with the bioavailability of Cd, Ni, and Zn, which could promote the release of HMs in mining soil as chemical weathering progresses. In conclusion, this study provides a structured method which can be used as a standard approach for similar scenarios to determine the geochemical fractionation, bioavailability, and release kinetics of heavy metals in soils.
Mostrar más [+] Menos [-]Implications of speciation on rare earth element toxicity: A focus on organic matter influence in Daphnia magna standard test Texto completo
2022
Lachaux, Nicolas | Catrouillet, Charlotte | Marsac, Rémi | Poirier, Laurence | Pain-Devin, Sandrine | Gross, Elisabeth Maria | Giamberini, Laure
Rare earth elements (REE) have become essential in high- and green-technologies. Their increasing use lead to the release of anthropogenic REE into the environment including aquatic systems. The limited data available on the aquatic ecotoxicology of REE indicate their biological effects are highly dependent on their speciation, posing challenges for a reliable environmental risk assessment (ERA). The current study assessed the influence of speciation on the toxicity of neodymium (Nd), gadolinium (Gd) and ytterbium (Yb) in the Daphnia magna mobility inhibition test (ISO 6341:2012). REE toxicity was assessed individually and in ternary mixture, in the absence and presence of dissolved organic matter (DOM). Speciation was predicted by modeling and REE bioaccumulation by D. magna was measured to better understand the relationship between REE speciation and toxicity. DOM decreased significantly the toxicity of Nd, Gd and the mixture towards this freshwater crustacean. This was explained by a lower REE bioaccumulation in the presence of DOM due to REE-DOM complexation, which reduced REE bioavailability. DOM effects on Yb toxicity and bioaccumulation were limited because of Yb precipitation. We show that the way of expressing EC50 values (based on nominal, measured or predicted REE concentrations in solution) drastically changed REE toxicity assessment and that these changes were influenced by REE speciation. This study demonstrates for the first time that REE speciation, and especially REE-DOM complexation, significantly influences REE bioaccumulation and toxicity towards D. magna. Our results have implications for the subsequent ERA of REE.
Mostrar más [+] Menos [-]Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan Texto completo
2021
Weber, Annika M. | Baxter, Bridget A. | McClung, Anna | Lamb, Molly M. | Becker-Dreps, Sylvia | Vilchez, Samuel | Koita, Ousmane | Wieringa, Frank | Ryan, Elizabeth P.
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg⁻¹) and lowest in Guatemala (0.017 mg kg⁻¹) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Mostrar más [+] Menos [-]