Refinar búsqueda
Resultados 1-10 de 388
Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea Texto completo
2022
Sabatino, Raffaella | Cabello-Yeves, Pedro J. | Eckert, Ester M. | Corno, Gianluca | Callieri, Cristiana | Brambilla, Diego | Dzhembekova, Nina | Moncheva, Snejana | Di Cesare, Andrea
Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.
Mostrar más [+] Menos [-]Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks Texto completo
2022
Qi, Qian | Hu, Caixia | Lin, Jiahui | Wang, Xuehua | Tang, Caixian | Dai, Zhongmin | Xu, Jianming
Soil contamination with multiple heavy metals poses threats to human health and ecosystem functioning. Using the Nemerow pollution index, which considers the effects of multiple heavy metals, we compared the diversity and composition of bacteria, fungi and protists and their potential interactions in response to a multi-metal contamination gradient. Multi-metal contamination significantly altered the community composition of bacteria, fungi and protists, and the degree of alteration increased with increasing severity of contamination. The alpha-diversity of bacteria, fungi and protists significantly decreased with increasing contamination level. The dominant generalists, found in all soil samples, were Gammaproteobacteria, Chloroflexi and Bacillus sp, whereas the dominant specialists were Anaerolineaceae, Entoloma sp. and Sandonidae_X sp. The relative abundances of generalists were positively correlated, whereas those of specialists were negatively correlated, with the Nemerow pollution index. In addition, the complexity of the microbial co-occurrence network increased with increasing contamination level. Generalists, rather than specialists, were the keystones in the microbial co-occurrence network and played a crucial role in adaptation to multi-metal contamination through enhanced potential interactions within the entire microbiome. Our results provide insights into the ecological effects of multi-metal contamination on the soil microbiome and will help to develop bio-remediation technologies for contaminated soils.
Mostrar más [+] Menos [-]Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene Texto completo
2021
DeBofsky, Abigail | Xie, Yuwei | Challis, Jonathan K. | Jain, Niteesh | Brinkmann, Markus | Jones, Paul D. | Giesy, John P.
The microbiome has been described as an additional host “organ” with well-established beneficial roles. However, the effects of exposures to chemicals on both structure and function of the gut microbiome of fishes are understudied. To determine effects of benzo[a]pyrene (BaP), a model persistent organic pollutant, on structural shifts of gut microbiome in juvenile fathead minnows (Pimephales promelas), fish were exposed ad libitum in the diet to concentrations of 1, 10, 100, or 1000 μg BaP g⁻¹ food, in addition to a vehicle control, for two weeks. To determine the link between exposure to BaP and changes in the microbial community, concentrations of metabolites of BaP were measured in fish bile and 16S rRNA amplicon sequencing was used to evaluate the microbiome. Exposure to BaP only reduced alpha-diversity at the greatest exposure concentrations. However, it did alter community composition assessed as differential abundance of taxa and reduced network complexity of the microbial community in all exposure groups. Results presented here illustrate that environmentally-relevant concentrations of BaP can alter the diversity of the gut microbiome and community network connectivity.
Mostrar más [+] Menos [-]Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish Texto completo
2021
Zhao, Yao | Qin, Zhen | Huang, Zhuizui | Bao, Zhiwei | Luo, Ting | Jin, Yuanxiang
Various microplastics (MPs) are found in the environment and organisms. MP residues in organisms can affect health; however, their impacts on metabolism in aquatic organisms remain unclear. In this study, zebrafish embryos were exposed to polyethylene MPs with sizes ranging from 1 to 4 μm at concentrations of 0, 10, 100, and 1000 μg/L for 7 days. Through qPCR technology, the results indicated that zebrafish exposed to polyethylene MPs exhibited significant change in microbes of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia, etc. Moreover, 16S RNA gene sequencing revealed that there was a significant difference in alpha diversity between the control and 1000 μg/L MP-treated groups. At the genus level, the abundance of Aeromonas, Shewanella, Microbacterium, Nevskia and Methyloversatilis have increased remarkably. Conversely, the abundance of Pseudomonas, Ralstonia and Stenotrophomonas were significant reduction after MPs exposure. In addition, the levels of TG (triglyceride), TCHO (total cholesterol), NEFA (nonesterified fatty acid), TBA (total bile acid), GLU (glucose) and pyruvic acid significantly changed in MP-treated larval zebrafish, indicating that their metabolism was disturbed by MPs. Transcriptional levels of glucose and lipid metabolism-related genes showed a decreasing trend. Furthermore, LC/MS-based nontargeted metabolomics analysis demonstrated that a total of 59 phospholipid-related substances exhibited significant changes in larval fish treated with 1000 μg/L MPs. The mRNA levels of phospholipid metabolism-related genes were also obviously changed. Pearson correlation analysis indicated that the abundance of Aeromonas, Shewanella and Chitinibacter bacteria showed a negative correlation with most phospholipids, while Nevskia, Parvibacter and Lysobacter showed a positive correlation with most phospholipids. Based on these results, it is suggested that 1–4 μm PE-MPs could impact the microbiome and metabolism of larval zebrafish. All of these results indicated that the health risk of MPs cannot be ignored.
Mostrar más [+] Menos [-]The performance of taxonomic and trait-based approaches in the assessment of dusky flounder parasite communities as indicators of chemical pollution Texto completo
2021
Ocaña, Frank A. | Soler-Jiménez, Lilia C. | Aguirre-Macedo, M Leopoldina | Vidal-Martínez, Víctor M.
We assessed the performance of taxonomic and several functional trait-based approaches in the assessment of spatial and temporal patterns of dusky flounder (Syacium papillosum) parasite assemblages along the Yucatan shelf to determine their potential as bioindicators of marine chemical pollution. Fish specimens were collected throughout three research cruises that took place in 2015, 2016 and 2018. In addition to the traditional taxonomic approach, four trait-based approaches were performed including community-weighted means (CWM), functional trait niche (FTN), functional groups (FGs), and Rao's functional diversity (FD). Significant spatial and temporal variations in parasite communities were detected using the taxonomic approach. In general, these variations were also reflected in the four trait-based approaches performed, indicating that changes in taxa composition and abundance also resulted in functional composition shifts. Resemblance matrices of both taxonomic and functional trait approaches were significantly correlated. Variations in taxonomic and trait-based composition using the four approaches were significantly correlated with depth, and at least one chemical pollutant variable. Feeding mode, transmission, life stage and attachment structure displayed spatial variability and significant correlations with predictor variables, which indicates that this set of attributes functions as a good surrogate for assessing variations in the functional composition of flatfish parasite communities in relation to pollution. FTN and CWM were the approaches that best detected spatio-temporal variation. CWM and FD were best suited for detecting pollution gradients. These results reveal the feasibility of using trait-based approaches to assess marine parasite communities as bioindicators of chemical pollution. Functional traits of marine metazoan parasites are as good indicators of the effect of oil pollution as taxonomic diversity. This may be a time-saving and cost-effective approach to performing environmental assessments.
Mostrar más [+] Menos [-]Human impacted shallow lakes in the Pampean plain are ideal hosts for cyanobacterial harmful blooms Texto completo
2021
O'Farrell, Inés | Sánchez, María Laura | Schiaffino, María Romina | Izaguirre, Irina | Huber, Paula | Lagomarsino, Leonardo | Yema, Lilen
The ecological status of Pampean shallow lakes is evidenced by Cyanobacteria Harmful Blooms impairing these nutrient enriched, turbid and polymictic water bodies spread along the Central Plains of Argentina. Under the premise that shallow lakes are sentinels of global climate and eutrophication, a 3-year research in ten lakes located across a climatic gradient explored which factors drove the dynamics of cyanobacterial assemblages frequently driving to bloom prevalence. Contrarily to what is expected, the effect of seasonal temperature on cyanobacteria was subordinated to both the light environment of the water column, which was on turn highly affected by water level conditions, and to nutrient concentrations. Monthly samplings evidenced that cyanobacterial assemblages presented a broad-scale temporal dynamics mostly reflecting inter-annual growth patterns driven by water level fluctuations. Both species composition and biovolume gradually changed across a gradient of resources and conditions and hence, the scenario in each individual lake was unique with patterns at different temporal and spatial scales. More than 35 filamentous and colonial morphospecies constituted the assemblages of Pampean lakes: nostocaleans and chroococcaleans were inversely correlated in the prevailing interannual 3-cycled patterns.
Mostrar más [+] Menos [-]Fresh chicken manure fumigation reduces the inhibition time of chloropicrin on soil bacteria and fungi and increases beneficial microorganisms Texto completo
2021
Zhang, Daqi | Cheng, Hongyan | Hao, Baoqiang | Li, Qingjie | Wu, Jiajia | Zhang, Yi | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Jin, Xi | He, Lin | Cao, Aocheng
Chloropicrin (CP) controls soil-borne plant diseases caused by pathogenic microbes, increases crop yield, but has a long-term inhibitory effect on beneficial soil microorganisms. Therefore, we evaluated the effects of biofumigation material fresh chicken manure (FCM) on soil microorganisms, and the duration of those effects in this experiment. Our results showed that in the laboratory, FCM significantly increased substrate-induced respiration (SIR) of soil microorganisms by 2.2–3.2 times at 80 d compared to the control, however, CP significantly inhibited the SIR of soil microorganisms. FCM and CP increased NH4+-N concentration within 40 days which then returned to the control level. FCM increased NO3--N by 2.82–5.78 times by 80 days, compared with the control, while the concentration of NO3--N in the CP treatment was not significantly different from the control at the 80 day. Although in the laboratory FCM inhibited the relative abundance of 16 S rRNA and the nitrogen cycle functional genes AOA amoA, AOB amoA, nirK and nosZ over a 40-day period, the taxonomic diversity of soil bacteria and fungi in the FCM treatment were restored to unfumigated level within 90 days in the field. However, CP treatment has a strong inhibitory effect on soil microorganisms after 90 days. Importantly, the relative abundance of some beneficial microorganisms that control soil-borne pathogenic microbes or degrade pollutants increased significantly in FCM, including Bacillus, Pseudomonas and Streptomyces bacterial genera and Chaetomium and Mycothermus fungal genera. Noteworthy, like CP, FCM still had a strong inhibitory effect on Fusarium at 90 d. Our results indicated that FCM not only increased the content of inorganic nitrogen and improved the respiration rate of soil microorganisms, but it also shortened the recovery time of beneficial soil microorganisms and increased taxonomic diversity. Our previous reports showed that FCM and CP treatments had the same effect in disease control and crop growth. Combined with the results of this experiment, we believe that FCM has the potential to replace CP, which would eliminate CP's detrimental environmental impact, improve farmer safety and promote sustainable crop production.
Mostrar más [+] Menos [-]Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions Texto completo
2021
Kayani, Masood ur Rehman | Yu, Gan | Qiu, Yushu | Shen, Yao | Gao, Caixia | Feng, Ju | Zeng, Xinxin | Wang, Weiye | Chen, Lei | Su, Huang Li
A paradoxical impact of high rates of production and consumption of antibiotics is their widespread release in the environment. Consequently, low concentrations of antibiotics and their byproducts have been routinely identified from various environmental settings especially from aquatic environments. However, the impact of such low concentrations of antibiotics on the exposed host especially in early life remains poorly understood. We exposed zebrafish to two different environmental concentrations of oxytetracycline and sulfamethoxazole, from larval stage to adulthood (∼120 days) and characterized their impact on the taxonomic diversity, antibiotic resistance genes, and metabolic pathways of the gut microbiome using metagenomic shotgun sequencing and analysis. Long term exposure of environmental concentrations of oxytetracycline and sulfamethoxazole significantly impacted the taxonomic composition and metabolic pathways of zebrafish gut microbiome. The antibiotic exposed samples exhibited significant enrichment of multiple flavobacterial species, including Flavobacterium sp. F52, Flavobacterium johnsoniae and Flavobacterium sp. Fl, which are well known pathogenic bacteria. The relative abundance of antibiotic resistance genes, especially several tetratcycline and sulfonamide resistance genes were significantly higher in the exposed samples and showed a linear correlation with the antibiotic concentrations. Furthermore, several metabolic pathways, including folate biosynthesis, oxidative phosphorylation, and biotin metabolism pathways, showed significant enrichment in the antibiotic exposed samples. Collectively, our results suggest that early life exposure of the environmental concentrations of antibiotics can increase the abundance of unfavorable bacteria, antibiotic resistance genes and associated pathways in the gut microbiome of zebrafish.
Mostrar más [+] Menos [-]Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Texto completo
2020
Ma, Jun | Chen, Qing-Lin | O’Connor, Patrick | Sheng, G Daniel
Growing evidence suggests that metallic oxide nanoparticles can pose a severe risk to the health of invertebrates. Previous attention has been mostly paid to the effects of metallic oxide nanoparticles on the survival, growth and physiology of animals. In comparison, the effects on gut microbiota and incidence of antibiotic resistance genes (ARGs) in soil fauna remain poorly understood. We conducted a microcosm study to explore the responses of the non-target soil invertebrate Enchytraeus crypticus gut microbiota and resistomes to copper oxide nanoparticles (CuO NPs) and copper nitrate by using bacterial 16S rRNA gene amplicons sequencing and high throughput quantitative PCR. The results showed that exposure to Cu2+ resulted in higher bioaccumulation (P < 0.05) and lower body weight and reproduction (P < 0.05) of Enchytraeus crypticus than exposure to CuO NPs. Nevertheless, exposure to CuO NPs for 21 days markedly increased the alpha-diversity of the gut microbiota of Enchytraeus crypticus (P < 0.05) and shifted the gut microbial communities, with a significant decline in the relative abundance of the phylum Planctomycetes (from 37.26% to 19.80%, P < 0.05) and a significant elevation in the relative abundance of the phyla Bacteroidetes, Firmicutes and Acidobacteria (P < 0.05). The number of detected ARGs in the Enchytraeus crypticus gut significantly decreased from 45 in the Control treatment to 16 in the Cu(NO3)2 treatment and 20 in the CuO NPs treatment. The abundance of ARGs in the Enchytraeus crypticus gut were also significantly decreased to 38.48% when exposure to Cu(NO3)2 and 44.90% when exposure to CuO NPs (P < 0.05) compared with the controls. These results extend our understanding of the effects of metallic oxide nanoparticles on the gut microbiota and resistome of soil invertebrates.
Mostrar más [+] Menos [-]Microphytobenthos diversity and community structure across different micro-estuaries and micro-outlets: Effects of environmental variables on community structure Texto completo
2020
Dalu, Tatenda | Magoro, Mandla L. | Naidoo, Lyndle S. | Wasserman, Ryan J. | Human, Lucienne RD. | Adams, Janine B. | Perissinotto, R. | Deyzel, Shaun HP. | Wooldridge, Tris | Whitfield, Alan K.
This study forms the first basic assessment of microphytobenthos (MPB) dynamics in micro-estuaries and micro-outlets in southern Africa. It examines MPB community responses to environmental variables and further investigates MPB composition qualitatively across different micro-estuaries and micro-outlets over four seasons in a warm temperate region of the subcontinent. Combinations of multivariate analyses were used to explore similarities and differences in MPB communities between systems. Human-induced catchment changes between microsystems ranged from no alteration (rating 0; mostly micro-outlets) to extreme modification (rating 5; mostly micro-estuaries). Two hundred and sixty-seven MPB taxa were identified within all the microsystems, with 247 and 230 MPB taxa being observed in the micro-estuaries and micro-outlets, respectively. The MPB communities differed slightly in terms of microsystem types and seasons, but no significant differences were observed. Multivariate analyses (i.e. Boosted Regression Trees, Canonical Correspondence Analysis) showed that water column variables were significant and important in structuring MPB communities, with soluble reactive phosphorus, sediment pH, turbidity, ammonium and temperature being documented as key drivers. The MPB community composition clearly reflected the influence of catchment anthropogenic activities on species composition and structure. Moderately modified catchments resulted in MPB community structure variation among water bodies in relationship to land use and salinity gradients. The study found that; (i) by virtue of their size, microsystems and their catchments are likely to be particularly vulnerable to anthropogenic pressures when compared to systems of larger size; (ii) a typical impacted state may reflect reduced environmental heterogeneity which, compared to larger systems, may be achieved over much shorter time periods (following a particular event) or under much less intensive impacts; and (iii) the response in terms of MPB structure may predictably reflect a concomitant change from a complex community dynamic (structure and spatio-temporal attributes) to one that approaches a homogeneous structure (poor spatial zonation, strong taxonomic dominance, low species diversity).
Mostrar más [+] Menos [-]