Refinar búsqueda
Resultados 1-10 de 115
Distribution of microplastics present in a stream that receives discharge from wastewater treatment plants
2022
Montecinos, S. | Gil, M. | Tognana, S. | Salgueiro, W. | Amalvy, J.
The presence of microplastics (MPs) in freshwater systems that receive discharge of urban effluent implies a great environmental impact. In order to be able to generate proposals that solve this problem, it is necessary to know in detail the contributions of different MPs sources. The aim of this work was to study the contribution of urban sewage discharge to MPs pollution in a stream that runs through a medium-sized city. The spatial distribution of MPs with sizes between 100 μm and 1.5 mm present in surface water was measured and their characteristics, dimensions, shapes and identification were determined. Physical-chemical parameters of the stream water were measured, and a decrease in water quality was found due to wastewater treatment plants. The main source of MPs was effluent from the plants (97% of the total MPs), while the rest came from storm drains and discharge of tributaries. The maximum concentration of MPs found was around 72,000 MP/L (equivalent to 53 million MPs/s), at a point after discharge from both plants. Around 70% of MPs correspond to microfibers with a mean length of around 300 μm and a mean width of around 15 μm, and they are mainly polyethylene fibers. The remaining 30% of MPs are particles with lengths of around 140 μm. The transport of MPs between a point located after discharge of the plants and another point located about 3 km further on was studied, and no significant variation was found in the concentration of MPs. Electrical conductivity was used as a conservative tracer of MPs concentration. This work presents for the first time a detailed analysis of different contributions of MPs to a freshwater system in South America, which receives discharge of wastewater treatment plants, evidencing its important role in pollution.
Mostrar más [+] Menos [-]Optical properties and 14C ages of stream DOM from agricultural and forest watersheds during storms
2021
Lee, Seung-Cheol | Shin, Yera | Jeon, Young-Joon | Lee, Eun-Ju | Eom, Jae-Sung | Kim, Bomchul | Oh, Neung-Hwan
Forest and agricultural land use affects the concentration and composition of dissolved organic carbon (DOC) in streams and rivers. To elucidate the impacts of forest and agricultural land use on stream DOC during storm events, we investigated DOC concentration ([DOC]), optical properties of dissolved organic matter (DOM), and Δ¹⁴C-DOC in both forest- and agriculture-dominated headwater streams in South Korea in the summer of 2012. One forested and five agricultural streams were investigated. During storms, the peak [DOC] of forest stream increased to 5.8 mg L⁻¹, approximately two times larger than that of the most agricultural stream (3.2 mg L⁻¹), demonstrating the weaker storm responses of the [DOC] of agricultural streams to hydrological change. Five PARAFAC components were identified, including three terrestrial humic-like substances (C1, C2, C3), one microbial humic substance (C4), and one microbial protein-like substances (C5). The mean (C4+C5)/(C1+C2+C3) of all storm events at the most agricultural stream was 1.5 times larger than that of the most forested stream, suggesting that more protein-like DOM is exported from agricultural watersheds. Whereas a forest stream was primarily composed of terrestrially derived and ¹⁴C-enriched modern DOC, the ¹⁴C-age of the most agricultural stream was up to ∼1000 years old. The results suggest that agricultural practices could decrease the old organic carbon pools from soils. However, how quickly the aged DOC can be degraded to CO₂ in streams is unknown, warranting future investigation on lability of the aged DOC and their effects on CO₂ evasion from rivers and estuaries downstream.
Mostrar más [+] Menos [-]Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer
2021
Wu, Tianhao | Zhu, Guangwei | Zhu, Mengyuan | Xu, Hai | Yang, Jun | Zhao, Xianfu
Reservoirs are an important type of drinking water source for megacities, while lots of reservoirs are threatened by odor problems during certain seasons. The influencing factors of odor compounds in reservoirs are still unclear. During August 2019, a nationwide survey investigating the distribution of odor compounds in reservoirs used as drinking water sources was conducted on seven reservoirs. 2-methylisoborneol (2-MIB) and geosmin were detected in almost every reservoir, and some odor compound concentrations even exceeded the odor threshold concentration. The average concentration of 2-MIB was 2.68 ng/L, and geosmin was 3.63 ng/L. The average chlorophyll a concentration was 8.25 μg/L. The dominant genera of phytoplankton in these reservoirs belonged to cyanobacteria and diatom. Statistical analysis showed that odor compound concentration was significantly related to the chlorophyll a concentration and indicated that the odor compounds mainly came from phytoplankton. The concentration of odor compounds in the euphotic zone was significantly related to phytoplankton species and biomass. Therefore, the odor compound concentrations in the subsurface chlorophyll maxima layer was generally higher than in the surface layer. However, the odor compounds in the hypolimnion layer were related to the density current. This research suggests that both phytoplankton proliferation events and heavy storm events are important risk factors increasing odor compounds in reservoirs. Control of algal bloom, in-situ profile monitoring system and depth-adjustable pumping system will greatly reduce the risk of odor problems in reservoirs using as water supplies for large cities.
Mostrar más [+] Menos [-]Retention of microplastics in sediments of urban and highway stormwater retention ponds
2019
Liu, Fan | Vianello, Alvise | Vollertsen, Jes
Urban and highway surfaces discharge polluted runoff during storm events. To mitigate environmental risks, stormwater retention ponds are commonly constructed to treat the runoff water. This study is the first to quantify the retention of microplastics in the sediments of such ponds. It applied state-of-art FTIR-methods to analyse the composition, size, shape, and mass of microplastics in the range 10–2000 μm. Seven ponds serving four land uses were investigated, and the results are related to catchment characteristics, sediment organic matter content, and hydraulic loading. We have not found a correlation between the microplastics abundance, polymer composition, size distribution and the land use in the catchment, as well as the sediment organic matter content. Both the highest (127,986 items kg⁻¹; 28,732 μg kg⁻¹) and the lowest (1511 items kg⁻¹; 115 μg kg⁻¹) accumulation of microplastics were found in the sediments of ponds serving industrial areas. There was, however, a correlation to the hydraulic loading of the ponds, where the sediments of the highest-loaded ponds held the most microplastics. This study shows that sediments in stormwater retention ponds can trap some of the microplastics and prevent them from being transported downstream. These systems need to be considered when assessing the fate of microplastics from urban and highway areas.
Mostrar más [+] Menos [-]Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record
2015
Corcoran, Patricia L. | Norris, Todd | Ceccanese, Trevor | Walzak, Mary Jane | Helm, Paul A. | Marvin, Chris H.
Microplastics are a source of environmental pollution resulting from degradation of plastic products and spillage of resin pellets. We report the amounts of microplastics from various sites of Lake Ontario and evaluate their potential for preservation in the sediment record. A total of 4635 pellets were sampled from the Humber Bay shoreline on three sampling dates. Pellet colours were similar to those from the Humber River bank, suggesting that the river is a pathway for plastics transport into Lake Ontario. Once in the lake, high density microplastics, including mineral-polyethylene and mineral-polypropylene mixtures, sink to the bottom. The minerals may be fillers that were combined with plastics during production, or may have adsorbed to the surfaces of the polymers in the water column or on the lake bottom. Based on sediment depths and accumulation rates, microplastics have accumulated in the offshore region for less than 38 years. Their burial increases the chance of microplastics preservation. Shoreline pellets may not be preserved because they are mingled with organic debris that is reworked during storm events.
Mostrar más [+] Menos [-]Foraminifera as bioindicators of water quality: The FoRAM Index revisited
2020
Prazeres, Martina | Martínez-Colón, Michael | Muller, Pamela Hallock
Coral reefs worldwide are degrading at alarming rates due to local and global stressors. There are ongoing needs for bioindicator systems that can be used to assess reef health status, the potential for recovery following destructive events such as tropical storms, and for the success of coral transplants. Benthic foraminiferal shells are ubiquitous components of carbonate sediment in reef environments that can be sampled at minimal cost and environmental impact. Here we review the development and application of the FoRAM Index (FI), which provides a bioindicator metric for water quality that supports reef accretion. We outline the strengths and limitations of the FI, and propose how it can be applied more effectively across different geographical regions.
Mostrar más [+] Menos [-]Size distribution of stranded small plastic debris on the coast of Guangdong, South China
2017
Fok, Lincoln | Cheung, Pui Kwan | Tang, Guangda | Li, Wai Chin
Beach environments are known to be conducive to fragmentation of plastic debris, and highly fragmented plastic particles can interact with smaller organisms. Even through stranded plastic debris may not interact directly with marine organisms, backwash processes may transport this debris back to coastal waters, where it may affect a wide range of marine life at different trophic levels. This study analysed the size distribution of stranded plastic debris (<10 mm) collected from eight coastal beaches in Guangdong Province, China. Polystyrene (PS) foams and fragments smaller than 7 mm were increasingly abundant in the smaller size classes, whereas resin pellets remained in their production sizes (∼3 mm). Microplastics (<5 mm) accounted for over 98% of the total plastic debris by abundance and 71% by weight, indicating that the plastic debris on these coastal beaches was highly fragmented and the majority of the plastic masses belonged to the microplastic size range. The observed size distributions of PS foams and fragments are believed to result from continued fragmentation. Previous studies found that the residence time of beached debris was less than one year on average, and no sign of plastic accumulation with depth in beach sediment was observed. Therefore, coastal beaches may represent a reservoir of highly fragmented and degraded microplastics that may be mobilised and returned to the sea during storm events. Further research on the dynamics and longevity of microplastics on beaches will help reveal the mass balance of microplastics on the shoreline and determine whether shorelines are sinks or sources of microplastics.
Mostrar más [+] Menos [-]Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field
2017
Chrétien, François | Giroux, Isabelle | Thériault, Georges | Gagnon, Patrick | Corriveau, Julie
With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after application but rapidly resumed below these limits.
Mostrar más [+] Menos [-]Enhanced trophic transfer of chlorpyrifos from resistant Hyalella azteca to inland silversides (Menidia beryllina) and effects on acetylcholinesterase activity and swimming performance at varying temperatures
2021
Fuller, Neil | Huff Hartz, Kara E. | Johanif, Nadhirah | Magnuson, Jason T. | Robinson, Eleni K. | Fulton, Corie A. | Poynton, Helen C. | Connon, Richard E. | Lydy, Michael J.
Chlorpyrifos, an organophosphate (OP) insecticide, is prevalent in aquatic systems globally and is often implicated in aquatic toxicity during storm events. Chlorpyrifos induces toxicity by inhibition of acetylcholinesterase (AChE) activity, which has been related to alterations to fish swimming performance. Resistance to organophosphate insecticides, including chlorpyrifos, is prevalent in populations of the epibenthic amphipod Hyalella azteca in areas with known OP exposure. Previous studies have demonstrated an elevated bioaccumulation potential of insecticide-resistant prey items, however the potential for trophic transfer of chlorpyrifos from OP-resistant prey items and associated neurotoxic effects in fish predators has not been studied. Consequently, the present study aimed to determine the potential for trophic transfer of chlorpyrifos from OP-resistant H. azteca to a known predator, the inland silverside, Menidia beryllina at two temperatures (18 and 23 °C) to simulate temperature changes associated with global climate change (GCC). Fish were fed either ¹⁴C-chlorpyrifos-dosed H. azteca or control animals for 7 d, after which total bioaccumulation, percent parent chlorpyrifos, brain AChE activity and swimming performance (ramp-Ucᵣᵢₜ) were determined. Fish fed chlorpyrifos-dosed H. azteca bioaccumulated chlorpyrifos ranging from 29.9 to 1250 ng/g lipid, demonstrating the potential for trophic transfer. Lower bioaccumulation and greater biotransformation were observed in M. beryllina at 23 °C as compared to 18 °C, though this was not statistically significant. A significant 36.5% reduction in brain AChE activity was observed in fish fed chlorpyrifos-dosed H. azteca at 23 °C only, which may be attributed to increased biotransformation of parent chlorpyrifos to more potent AChE-inhibiting metabolites. Dietary chlorpyrifos exposure had no significant effect on swimming performance in M. beryllina, though ramp-Ucᵣᵢₜ was significantly increased by 25% at 23 as compared to 18 °C. These findings confirm the potential for trophic transfer of chlorpyrifos from OP-resistant prey to fish predators and the potential for elevated temperatures to exacerbate the neurotoxic effects of chlorpyrifos.
Mostrar más [+] Menos [-]Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices
2020
Pinasseau, Lucie | Wiest, Laure | Volatier, Laurence | Mermillod-Blondin, Florian | Vulliet, Emmanuelle
The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.
Mostrar más [+] Menos [-]