Refinar búsqueda
Resultados 1-10 de 239
Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp Texto completo
2018
Bartlett, Adrienne J. | Hedges, Amanda M. | Intini, Kyna D. | Brown, Lisa R. | Maisonneuve, France J. | Robinson, Stacey A. | Gillis, Patricia L. | de Solla, Shane R.
Neonicotinoid insecticides are environmentally persistent and highly water-soluble, and thus are prone to leaching into surface waters where they may negatively affect non-target aquatic insects. Most of the research to date has focused on imidacloprid, and few data are available regarding the effects of other neonicotinoids or their proposed replacements (butenolide insecticides). The objective of this study was to assess the toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to Hexagenia spp. (mayfly larvae). Acute (96-h), water-only tests were conducted, and survival and behaviour (number of surviving mayflies inhabiting artificial burrows) were assessed. Acute sublethal tests were also conducted with imidacloprid, acetamiprid, and thiacloprid, and in addition to survival and behaviour, mobility (ability to burrow into sediment) and recovery (survival and growth following 21 d in clean sediment) were measured. Sublethal effects occurred at much lower concentrations than survival: 96-h LC50s ranged from 780 μg/L (acetamiprid) to >10,000 μg/L (dinotefuran), whereas 96-h EC50s ranged from 4.0 μg/L (acetamiprid) to 630 μg/L (thiamethoxam). Flupyradifurone was intermediate in toxicity, with a 96-h LC50 of 2000 μg/L and a 96-h EC50 of 81 μg/L. Behaviour and mobility were impaired significantly and to a similar degree in sublethal exposures to 10 μg/L imidacloprid, acetamiprid, and thiacloprid, and survival and growth following the recovery period were significantly lower in mayflies exposed to 10 μg/L acetamiprid and thiacloprid, respectively. A suite of effects on mayfly swimming behaviour/ability and respiration were also observed, but not quantified, following exposures to imidacloprid, acetamiprid, and thiacloprid at 1 μg/L and higher. Imidacloprid concentrations measured in North American surface waters have been found to meet or exceed those causing toxicity to Hexagenia, indicating that environmental concentrations may adversely affect Hexagenia and similarly sensitive non-target aquatic species.
Mostrar más [+] Menos [-]Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment Texto completo
2018
Česen, Marjeta | Heath, David | Krivec, Marko | Košmrlj, J. (Janez) | Kosjek, Tina | Heath, Ester
This study reports the development of a multi-residue method for determining 48 compounds of emerging concern (CEC) including three diclofenac transformation products (TP) in Slovenian wastewater (WW) and surface water (SW). For solid-phase extraction (SPE), Oasis™ Prime cartridges were favoured over Oasis HLB™. The validated method was then applied to 43 SW and 52 WW samples collected at nine locations. Ten bisphenols in WW and 14 bisphenols in SW were traced in Europe for the first time. Among all of the 48 targeted CEC, 21 were >LOQ in the influents and 20 in the effluents. One diclofenac TP was also quantified in WWs (3.04–78.1 ng L⁻¹) for the first time. As expected, based on mass loads in the wastewater treatment plant influents, caffeine is consumed in high amounts (105,000 mg day⁻¹ 1000 inhab.⁻¹) in Slovenia, while active pharmaceutical ingredients (APIs) are consumed in lower amounts compared to other European countries. Removal was lower in winter in the case of four bisphenols (17–78%), one preservative (36%) and four APIs (-14–91%), but remained constant for caffeine, one API, two UV-filters and three preservatives (all >85.5%). Overall, a constructed wetland showed the lowest (0–80%) and most inconsistent removal efficiencies (SD > 40% for some CECs) of CECs including caffeine, two UV-filters, two preservatives and two APIs compared to other treatment technologies. The method was also able to quantify Bisphenol S in SW (<36.2 ng L⁻¹). Environmental risk was assessed via risk quotients (RQs) based on WW and SW data. Two UV-filters (oxybenzone and dioxybenzone), estrone and triclosan, despite their low abundance posed a medium to high environmental risk with RQs between 0.282 (for HM-BP) and 15.5 (for E1).
Mostrar más [+] Menos [-]Microplastic pollution in the surface waters of Italian Subalpine Lakes Texto completo
2018
Sighicelli, Maria | Pietrelli, Loris | Lecce, Francesca | Iannilli, Valentina | Falconieri, Mauro | Coscia, Lucia | Di Vito, Stefania | Nuglio, Simone | Zampetti, Giorgio
Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (<5 mm) were found in all sampled surfaces. The particles collected were classified depending on their number, shape and composition. The shape distribution showed the dominating occurrence of fragments (73.7%). The chemical composition of all examined samples clearly shows dominating presence of polyethylene (45%), polystyrene (18%) and polypropylene (15%). The results provide significant relations among the different contribution of direct and diffuse sources to the quantity of microplastics, highlighting the importance of understanding the spatial distribution dynamics of microplastics within a lake system that acts as a sink and source of plastic particles.
Mostrar más [+] Menos [-]Modeling spray drift and runoff-related inputs of pesticides to receiving water Texto completo
2018
Zhang, Xuyang | Luo, Yuzhou | Goh, Kean S.
Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) < 28%; for daily pesticide loading, NSE = 0.18 and PBIAS = −1.6%. This modeling framework will be useful for assessing the relative exposure from pesticides related to spray drift and runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed.
Mostrar más [+] Menos [-]Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China Texto completo
2018
Zhong, Wenjue | Wang, Donghong | Wang, Zijian
Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as priority phenolic compounds.
Mostrar más [+] Menos [-]Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea Texto completo
2018
Zhang, Ze-Ming | Zhang, Hong-Hai | Zou, Ya-Wen | Yang, Gui-Peng
The spatial distribution, chemical composition and ecological risk of 16 phthalate esters (PAEs) were investigated in the sea-surface microlayer (SML), seawater and sediment samples of the Bohai Sea (BS) and the Yellow Sea (YS). The concentration levels of the ΣPAEs spanned a range of 449–13441 ng L−1 in the SML, 453–5108 ng L−1 in seawater, and 1.24–15.8 mg kg−1 in the sediment samples, respectively, with diisobutyl phthalate (DiBP), di-n-butyl phthalate (DBP) and di-ethylhexyl phthalate (DEHP) as the dominant PAEs in both the water and sediment samples. The concentrations of ΣPAEs in the BS were higher than those in the YS. The vertical distribution of ΣPAEs in the water column showed that the concentrations were higher in the surface waters, but decreased slightly with depth, and started to increase at the bottom. Additionally, PAEs were significantly enriched in the SML, with an average enrichment factor of 1.46. The ecological risk of the PAEs was evaluated by the risk quotient (RQ) method, which indicated that DEHP posed a high risk to aquatic organisms in the whole water-phase, while the RQ values of DBP and DiBP reached a high risk levels in sedimentary environment.
Mostrar más [+] Menos [-]Distribution and speciation of mercury affected by humic acid in mariculture sites at the Pearl River estuary Texto completo
2018
Ding, Lingyun | Zhao, Kaiyun | Zhang, Lijuan | Liang, Peng | Wu, Shengchun | Wong, Ming Hung | Tao, Huchun
At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L−1 d−1) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system.
Mostrar más [+] Menos [-]Seasonal and annual variations in removal efficiency of perfluoroalkyl substances by different wastewater treatment processes Texto completo
2018
Chen, Shuqin | Zhou, Yunqiao | Meng, Jing | Wang, Tieyu
Municipal wastewater treatment plants (WWTPs) are important in the migration and transformation of perfluoroalkyl substances (PFASs) in water bodies. Six municipal WWTPs located in the upper reaches of the Guanting reservoir, along the Yanghe River, were sampled from November 2016 to July 2017. Influents, effluents, and activated sludge solutions were sampled and the concentrations of 17 PFASs were analyzed. Perfluorobutanoic acid (PFBA), Perfluorooctanoic acid (PFOA), Perfluorohexanoic acid (PFHxA), Perfluoropentanoic acid (PFPeA), Perfluorobutane sulfonat (PFBS) and Perfluorooctane sulfonate (PFOS) accounted for more than 90% of these. Seasonal variations in PFASs in influent directly influenced concentrations in supernatant and effluent. The annual average PFAS concentrations were 46.4, 45.1, and 38.5 ng L⁻¹ in influent, supernatant, and effluent, respectively, indicating that WWTPs do not efficiently remove PFASs from wastewater. Annual average PFAS removal efficiencies differed among WWTPs, were influenced primarily by the treatment process used at each, and followed the order Cyclic Activated Sludge System (CASS, 32.2%) > Orbal Oxidation Ditch (OD, 17.5%) > Anaeroxic–Anoxic–Oxic (A²/O, −1.49%). Short-chain PFASs were removed significantly more efficiently in the CASS compared to the other systems. These results can show how traditional wastewater treatment plants can help remove PFASs from the environment.
Mostrar más [+] Menos [-]Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China Texto completo
2018
Hao, Zhuo | Zhang, Xinyu | Gao, Yang | Xu, Zhiwei | Yang, Fengting | Wen, Xuefa | Wang, Yueming
By identifying the main sources of nitrate (NO3−) can obtain useful information to support the management of NO3− pollution, particularly in subtropical catchments with shallow drinking water wells. This study used water chemistry and dual stable isotopes δ15N and δ18O methods to assess seasonal and spatial variations of NO3− in precipitation, surface water, and groundwater in an agricultural and forest subtropical catchment in Jiangxi Province, China. The maximum concentrations of nitrate-nitrogen (NO3−-N) and ammonium-nitrogen (NH4+-N) were 10.4 and 10.8 mg L−1in samples collected from 221 rainfall events from 2011 to 2013. About 4.4% and 12.3% NH4+-N concentrations of surface water and groundwater exceeded the thresholds of 1.0 and 0.2 mg L−1. The NO3−-N concentrations in surface water were closely correlated with NH4+-N concentrations in surface water and groundwater (r = −0.71 and r = −0.71, P < 0.05). The concentrations of NH4+-N and NO3−-N were significantly higher in a fishery pond and nearby drinking wells than in other monitoring points. Annual exports of NO3−-N and NH4+-N were 4.06 × 104 and 8.14 × 103 kg yr−1, respectively and NO3−-N is the main form of N loss. The δ15N values ranged from 0‰ to 20‰ in surface water and groundwater, and the δ18O values ranged from 0‰ to 15‰ and 1‰–13‰, respectively. Dual stable isotope natural abundance distribution and water chemistry [NO3−]/[Cl−] molar ratio information suggested that manure and sewage and soil N were the main sources of NO3− in surface water and manure and sewage in groundwater in summer and winter. In spring, water occurred denitrification and ammonium fertilizer, manure and sewage were the main sources of NO3− in surface water and groundwater which sampling points were closer residential area and fish ponds than paddy field and local farmers used more Manure. Manure applications should be reasonable around drinking water wells to protect the drinking water quality.
Mostrar más [+] Menos [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water Texto completo
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Mostrar más [+] Menos [-]