Refinar búsqueda
Resultados 1-10 de 617
A New Sustainable Approach to Integrated Solid Waste Management in Shiraz, Iran Texto completo
2022
Molayzahedi, Seyed Mohammadali | Abdoli, Mohammad Ali
Cities in developing countries like Shiraz in Iran face significant challenges due to a lack of an integrated solid waste management system. Climate change, soil, and water pollution are examples of environmental issues caused by improper Municipal Solid Waste Management Systems (MSWMS) in developing countries. The aim of this study is to find solutions for these environmental problems based on the experiences of developed countries. The data was collected using several methods such as visual observations, studying accessible documents of the current situation of the MSWMS in Shiraz, and participating in an interview with engineers the 'Shiraz Municipality Waste Management Organization' (SMWMO). Results present the current functional elements of MSWMS in Shiraz, Shiraz waste diversion rate (0.22), and its Zero Waste Index (.015). Moreover, the results present some recommendations to find a way to transform cities like Shiraz into zero-waste cities. Results indicate that establishing zero-waste policies, legal frameworks, and financial strategies as well as convincing private sector involvements in installing waste-to-energy facilities and a proper sanitary landfill to move the city toward optimum recycling and zero landfilling in addition to reducing consumption and maximizing diversion rate and finally sustainable development by the cooperation of government, NGOs and media programs would solve many problems of the MSWMS and would solve environmental issues in many cities.
Mostrar más [+] Menos [-]The Environmental Strategic Analysis of Oil & Gas Industries in the Kurdistan Region Using PESTLE, SWOT and FDEMATEL Texto completo
2019
Koshesh, O. S. | Jafari, H. R.
The need for oil and natural gas as a major source of energy is vital. On the one hand, it has affected the political and economic equations at the international, regional and national level. On the other hand, it has had negative effects on sociocultural, legal, and environmental aspects as well as on the physical and mental health of human beings. Therefore, the need to provide an environmental policy that addresses the various dimensions of the oil and gas industry will be necessary. The present paper aims to set up a conceptual model of environmental policy for sustainable development in the oil and gas industries of the Kurdistan Region through the use of these 6 components: political, economic, sociocultural, technological, legal and environmental. It will also be using the techniques of PESTLE, SWOT, SPACE, FANP, FDEMATEL, and simulation with the VENSIM software. The results show the weights of the criteria respectively are Political; 1.59, Economic; 0.78, Sociocultural; 0.00, Legal; -0.99, Technological; -0.61 and Environmental; -0.70. So that all components are important, but that political and economic factors have a significant influence on environmental policies and oil and gas industries. Sociocultural components have a neutral role and the technological, legal and environmental components are impressible. Finally, fifteen strategies for the formulation of an effective environmental policy in the oil and gas industry were presented.
Mostrar más [+] Menos [-]Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms Texto completo
2022
Saha, Asish | Pal, Subodh Chandra | Chowdhuri, Indrajit | Roy, Paramita | Chakrabortty, Rabin
One of the fundamental sustainable development goals has been recognized as having access to clean water for drinking purposes. In the Anthropocene era, rapid urbanization put further stress on water resources, and associated groundwater contamination expanded into a significant global environmental issue. Natural arsenic and related water pollution have already caused a burden issue on groundwater vulnerability and corresponding health hazard in and around the Ganges delta. A field based hydrogeochemical analysis has been carried out in the elevated arsenic prone areas of moribund Ganges delta, West Bengal, a part of western Ganga- Brahmaputra delta (GBD). New data driven heuristic algorithms are rarely used in groundwater vulnerability studies, specifically not yet used in the elevated arsenic prone areas of Ganges delta, India. Therefore, in the current study, emphasis has been given on integration of heuristic algorithms and random forest (RF) i.e., “RF-particle swarm optimization (PSO)”, “RF-grey wolf optimizer (GWO)” and “RF-grasshopper optimization algorithm (GOA)”, to identify groundwater vulnerable zones on the basis of field based hydrogeochemical parameters. In addition, correspondence health hazard of this area was assessed through human health hazard index. The spatial distribution of groundwater vulnerability revealed that middle-eastern and north-western part of the study area covered by very high and high, whereas central, western and south-western part are covered by very low and low vulnerability zones in outcomes of all the applied models. The evaluation result indicates that RF-GOA (AUC = 0.911) model performed the best considering testing dataset, and thereafter RF-GWO, RF-PSO and RF with AUC value is 0.901, 0.892 and 0.812 respectively. Findings also revealed the groundwater in this study region is quite unfavorable for drinking and irrigation purposes. The suggested models demonstrate their usefulness in foretelling sustainable groundwater resource management in various deltaic regions of the world through taking appropriate measures by policy-makers.
Mostrar más [+] Menos [-]Effects of shrimp pond effluent on functional traits and functional diversity of mangroves in Zhangjiang Estuary Texto completo
2022
Gao, Chang-Hao | Zhang, Shan | Wei, Ming-Yue | Ding, Qian-Su | Ma, Dong-Na | Li, Jing | Wen, Chen | Li, Huan | Zhao, Zhi-Zhu | Wang, Junhui | Zheng, Hai-Lei
In recent years, the scale of shrimp ponds has rapidly increased adjacent to mangrove forests. Discharge of shrimp pond effluent has led to degradation of the surrounding environment and reduction of biodiversity in the estuary. But it remains poorly understood how shrimp pond effluent affects functional traits and functional diversity of mangroves. We sampled roots, stems and leaves of Kandelia obovata and other mangrove plants, as well as sediments and pore water from shrimp pond effluent polluted area (P) and clean area (control area, C) in Zhangjiang Estuary in southeast coast of China. Twenty plant functional traits and six functional diversity indices were analyzed to explore the effects of shrimp pond effluent on individual plants and mangrove communities. The results showed that the discharge of shrimp pond effluent significantly affected the nutrient content in soils and pore water, for example, sediment NH₄⁺ and NO₃⁻ concentration increased from 0.26 ± 0.06 to 0.77 ± 0.29 mg/g and from 0.05 ± 0.03 to 0.16 ± 0.05 mg/g, respectively, when comparing the C and P site. Furthermore, some mangrove plant functional traits such as plant height, diameter at breast height, canopy thickness and specific leaf area were significantly increased by the effluent discharge. Functional diversity in the polluted area reduced as a whole compared to the control area. In particular, ammonium and nitrate nitrogen input is the main reason to induce the changes of plant functional traits and functional diversity. Besides, the community structure changed from functional differentiation to functional convergence after shrimp pond effluent discharge. In addition, the long-term shrimp pond effluent discharge may lead to the ecological strategy shift of K. obovata, while different organs may adopt different ways of nutrient uptake and growth strategies in the face of effluent disturbance. In conclusion, pollution from shrimp pond does affect the functional traits of mangrove plants and functional diversity of mangrove community. These results provide strong evidence to assess the impact of effluent discharges on mangrove plants and provide theoretical basis for conservation and sustainable development of mangroves.
Mostrar más [+] Menos [-]The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020 Texto completo
2022
Kanhai, La Daana K. | Asmath, Hamish | Gobin, Judith F.
Plastic pollution is one of several anthropogenic stressors putting pressure on ecosystems of the Caribbean Large Marine Ecosystem (CLME). A ‘Clean Ocean’ is one of the ambitious goals of the United Nations (UN) Decade of Ocean Science for Sustainable Development. If this is to be realized, it is imperative to build upon the work of the previous decades (1980–2020). The objectives of the present study were to assess the state of knowledge about: (i) the distribution, quantification, sources, transport and fate of marine debris/litter and microplastics in the coastal/marine environment of the CLME and, (ii) the effects of plastics on biodiversity. Snapshots, i.e., peer-reviewed studies and multi-year (1991–2020) marine debris data from International Coastal Cleanup (ICC) events, indicated that plastic debris was a persistent issue in multiple ecosystems and environmental compartments of the CLME. Collectively, a suite of approaches (debris categorization, remote sensing, particle tracking) indicated that plastic debris originated from a combination of land and marine-based sources, with the former more significant than the latter. Rivers were identified as an important means of transporting mismanaged land-based waste to the marine environment. Oceanic currents were important to the transport of plastic debris into, within and out of the region. Plastic debris posed a threat to the biodiversity of the CLME, with specific biological, physical, ecological and chemical effects being identified. Existing data can be used to inform interventions to mitigate the leakage of plastic waste to the marine environment. Given the persistent and transboundary nature of the issue, further elucidation of the problem, its causes and effects must be prioritized, while simultaneously harmonizing regional and international approaches.
Mostrar más [+] Menos [-]Use of thermally modified waste concrete powder for removal of Pb (II) from wastewater: Effects and mechanism Texto completo
2021
Ma, Zihan | Xue, Runze | Li, Jiang-shan | Zhao, Yaqin | Xue, Qiang | Chen, Zhen | Wang, Qiming | Poon, C. S. (Chi-sun)
Exploring effective uses of waste concrete powder (WCP), produced from recycling of construction & demolition waste is beneficial to the environment and sustainable development. In this study, WCP was first treated thermally to enhance the ability to remove Pb (II) from aqueous solutions. The experimental results revealed that the thermal treatment could enhance adsorption capacity due to modification of calcium bonding and pore structure of WCP. Preparation parameters such as temperature, particle size, and water-cement ratio were investigated to obtain the optimal operational conditions. Batch adsorption experiments were performed to explore influence factors of pH (1.00–6.00), ionic strength (0.05–2 mol/L), dosage (2–50 g/L), and temperature (25–45 °C). The pseudo-second-order kinetics model could adequately describe the adsorption process, and the Langmuir model was capable to predict the isotherm data well in the low concentration region (C₀ < 500 mg/L). The maximum uptake capacity for Pb (II) calculated by Langmuir model at 25, 35 and 45 °C were 46.02, 38.58 and 30.01 mg/g respectively, and the removal rate of Pb (II) was 92.96% at a dosage of 50 g/L (C₀ = 1000 mg/L). Precipitation, ion exchange, and surface complexation were identified to be the main mechanisms of Pb (II) adsorption through microscopic investigation by SEM-EDX, XRD, FTIR, XPS, and BET inspections. The study confirms that the WCP after thermal modification, can be selected as a promising adsorbent for the high performance and eco-friendliness.
Mostrar más [+] Menos [-]Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions Texto completo
2021
Numpilai, Thanapha | Cheng, Chin Kui | Seubsai, Anusorn | Faungnawakij, Kajornsak | Limtrakul, Jumras | Witoon, Thongthai
Recycling of waste glycerol derived from biodiesel production to high value-added chemicals is essential for sustainable development of Bio-Circular-Green Economy. This work studied the conversion of glycerol to 1,3-propanediol over Pt/WOₓ/Al₂O₃ catalysts, pointing out the impacts of catalyst pore sizes and operating conditions for maximizing the yield of 1,3-propanediol. The results suggested that both pore confinement effect and number of available reactive metals as well as operating conditions determined the glycerol conversion and 1,3-propanediol selectivity. The small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst (6.1 nm) gave a higher Pt dispersion (32.0%), a smaller Pt crystallite size (3.5 nm) and a higher number of acidity (0.47 mmol NH₃ g⁻¹) compared to those of the large-pore 5Pt/WOₓ/L-Al₂O₃ catalyst (40.3 nm). However, glycerol conversion and 1,3-propanediol yield over the small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst were significantly lower than those of the large-pore Pt/WOₓ/L-Al₂O₃ catalyst, suggesting that the diffusional restriction within the small-pore catalyst suppressed transportation of molecules to expose catalytic active sites, favoring the excessive hydrogenolysis of 1,3-propanediol, giving rise to undesirable products. The best 1,3-propanediol yield of 32.8% at 78% glycerol conversion were achieved over the 5Pt/WOₓ/L-Al₂O₃ under optimal reaction condition of 220 °C, 6 MPa, 5 h reaction time and amount of catalyst to glycerol ratio of 0.25 g mL⁻¹. However, the 1,3-propanediol yield and glycerol conversion decreased to 19.6% and 51% after the 4th reaction-regeneration which were attributed to the carbonaceous deposition and the agglomeration of Pt particles.
Mostrar más [+] Menos [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system Texto completo
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
Mostrar más [+] Menos [-]Reduction in VOC emissions by intermittent aeration in bioreactor landfills with gas-water joint regulation Texto completo
2021
Chu, Yi-Xuan | Wang, Jing | Tian, Guangming | He, Ruo
Landfill mining and reclamation is a new strategy for addressing the lack of space available for new landfills and realizing the sustainable development of landfills. A gas-water joint bioreactor landfill is regulated by injecting water and/or recirculating leachate, and a blasting aeration system to optimize waste stabilization. In this study, four landfill reactors were constructed to investigate the effects of ventilation methods, including continuous (20 h d⁻¹) and intermittent aeration (4 h d⁻¹ in continuous or 2-h aeration per 12 h, twice a day), on the degradation of organic matter and volatile organic compound (VOC) emissions in comparison with traditional landfills. A total of 62 VOCs were detected in the landfill reactors. Among them, halogenated compounds had the highest abundance (39.8–65.4 %), followed by oxygenated compounds, alkanes and alkenes, and aromatic compounds. Both intermittent and continuous aeration could accelerate the degradation of landfilled waste and increase the volatilization rate of VOCs. Compared with intermittent aeration, the degradation of landfilled waste was more quickly in the landfill reactor with continuous aeration. However, intermittent aeration could create anaerobic-anoxic-aerobic conditions, which were conducive to the growth and metabolism of anaerobic and aerobic microorganisms in landfills and thereby reduced more than 63.4 % of total VOC emissions from the landfill reactor with continuous aeration. Moreover, intermittent aeration could reduce the ventilation rate and decrease the cost of aeration by 80 % relative to continuous aeration. Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes predominated in the landfill reactors. The environmental variables including organic matter and VOCs concentrations had significant influences on microbial community structure in the landfilled waste. These findings indicated that intermittent aeration was an effective way to accelerate the stabilization of landfilled waste and reduce the cost and environmental risks in bioreactor landfills with gas-water joint regulation.
Mostrar más [+] Menos [-]Waste-to-energy nexus: A sustainable development Texto completo
2020
Sharma, Surbhi | Basu, Soumen | Shetti, Nagaraj P. | Kamali, Mohammadreza | Walvekar, Pavan | Aminabhavi, Tejraj M.
An upsurge in global population due to speedy urbanization and industrialization is facing significant challenges such as rising energy-demand, enormous waste-generation and environmental deterioration. The waste-to-energy nexus based on the 5R principle (Reduce, Reuse, Recycle, Recovery, and Restore) is of paramount importance in solving these Gordian knots. This review essentially concentrates on latest advancements in the field of ‘simultaneous waste reduction and energy production’ technologies. The waste-to-energy approaches (thermal and biochemical) for energy production from the agricultural residues are comprehensively discussed in terms environmental, techno-economic, and policy analysis. The review will assess the loopholes in order to come up with more sophisticated technologies that are not only eco-friendly and cost-effective, but also socially viable. The waste-to-energy nexus as a paradigm for sustainable development of restoring waste is critically discussed considering future advancement plans and agendas of the policy-makers.
Mostrar más [+] Menos [-]