Refinar búsqueda
Resultados 1-3 de 3
Pollution resistance assessment of plants around chromite mine based on anticipated performance index, dust capturing capacity and metal accumulation index
2022
Mandal, Kalicharan | Dhal, Nabin Kumar
Plant species sustaining under a polluted environment for a long time are considered as potentially resistant species. Those plant species can be considered as an eco-sustainable tool used to bio-monitor and mitigate pollution. This study was carried out on a total of ten commonly available plant species to assess their anticipated performance index (API), dust capturing capacity (DCC), and metal accumulation index (MAI) in chromite mine and control areas. According to the anticipated performance index (API), Macaranga peltata (Roxb.) Müll.Arg., Holarrhena pubescens Wall. ex G.Don and Ficus hispida Roxb. ex Wall. are highly tolerant species while Terminalia arjuna (Roxb. ex DC.) Wight & Arn. and Trema orientalis (L.) Blume are intermediate tolerant species. F. hispida was also shown to have the highest dust capturing capacity (5.94 ± 0.43 mg/cm²) whereas that of Woodfordia fruticosa Kurz (1.03 ± 0.11 mg/cm²) was found to be lowest. The metal accumulation index ranged from 17.29 to 4.5 and 6.38 to 1.94 at the mine and control areas, respectively. Two-way ANOVA analysis revealed area-wise significant differences between biochemical and physiological parameters. Also, results showed that the pollution level and heavy metal affected different biochemical and physiological parameters of plant species at the mining area. The plant species with the highest API, DCC, and MAI value could be recommended for greenbelt development in different polluted areas.
Mostrar más [+] Menos [-]Environmental friendly sustainable application of plant-based mordants for cotton dyeing using Arjun bark-based natural colorant
2021
Habib, Noman | Adeel, Shahid | Farhan Ali, | Amin, Nimra | Khan, Shahid Rehman
Ecofriendly exploration of Arjun bark (Terminalia arjuna) is a herbal natural colorant for cotton dyeing. This is because the demand for natural dyes has been increased worldwide due to their therapeutic usage and other food, textiles, agriculture, engineering, and medical applications. Therefore, this study has been carried out due to the isolation of colorant from Arjun bark in an acidified methanolic medium after exposure to ultrasonic rays up to 60 min. Additionally, using bio-mordants, it has been found that the application of 10% of Zeera (Cuminum cyminum) extract as meta-bio-mordant, 3% of Ilaichi (Elettaria cardamomum) extract as meta-bio-mordant, and10 % of Harmal (Peganum harmala) and Neem (Azadirachta indica) extract as meta-bio-mordants has given excellent color strength. These bio-mordants have not only made the coloration process more eco-friendly, viable, and greener, but also improved color strength with various tonal effects from red to reddish brown shades. Thus, it has been found that ultrasonic treatment as an environment-friendly tool has not only enhanced the color strength of natural colorant isolated from Arjun bark onto the cotton fabric under mild conditions.
Mostrar más [+] Menos [-]Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects
2018
Suganthy, Natarajan | Sri Ramkumar, Vijayan | Pugazhendhi, Arivalagan | Benelli, Giovanni | Archunan, Govindaraju
The development of neuroprotective drugs through eco-friendly production routes is a major challenge for current pharmacology. The present study was carried out to synthesize gold nanoparticles (AuNPs) through biogenic route using ethanolic bark extract of Terminalia arjuna, a plant of high interest in Asian traditional medicine, and to evaluate its neuroprotective effects. The synthesized AuNPs were characterized by UV-Vis spectroscopy, FTIR spectroscopy, XRD, FESEM, EDX, HRTEM, DLS, and zeta potential analyses. UV-Vis spectroscopy showed a characteristics SPR absorption band at 536 nm specific for AuNPs. XRD, TEM, and FESEM analyses revealed the formation of face-centered cubic crystalline, spherical and triangular shaped AuNPs, with size ranging between 20 and 50 nm. DLS and ZP analysis illustrated that the average size of AuNPs was 30 nm, which was found to be stable at 45 mv. The neuroprotective potential of AuNPs was evaluated by assessing its antioxidant, cholinesterase inhibitory, and antiamyloidogenic activities. AuNPs showed dose-dependant inhibition of acetylcholinesterase and butyrylcholinesterase with IC₅₀ value of 4.25 ± 0.02 and 5.05 ± 0.02 μg/ml, respectively. In vitro antioxidant assays illustrated that AuNPs exhibited the highest reducing power and DPPH radical scavenging activity. In addition, AuNPs also efficiently suppressed the fibrillation of Aβ and destabilized the preformed mature fibrils. Results of toxicity studies in PBMC and adult zebra fish illustrated that AuNPs are non-toxic and biocompatible. Overall, our results highlighted the AuNPs promising potential in terms of antioxidant, anticholinesterase, antiamyloidogenic effects, and non-lethality allowing us to propose these nanomaterials as a suitable candidate for the development of drugs helpful in the treatment of neurodegenerative disorders like Alzheimer’s disease. Graphical abstract ᅟ
Mostrar más [+] Menos [-]