Refinar búsqueda
Resultados 1-10 de 142
Determinants of Environmental Degradation in Thailand: Empirical Evidence from ARDL and Wavelet Coherence Approaches Texto completo
2021
Adebayo, T. S. | Akinsola, G. D. | Odugbesan, J. A. | Olanrewaju, V. O.
This paper explores long-run and causal effects of financial development, real growth, urbanization, gross capital formation and energy consumption on CO2 emissions in Thailand by utilizing recent econometric techniques. The study employs ARDL technique to examine the long and short run interconnection between CO2 emissions and the regressors. Furthermore, we employ the FMOLS, DOLS and CCR as a robustness check to the ARDL long-run estimator. The study use time-series data spanning from 1971 to 2016. The study also utilizes the wavelet coherence technique to collect information on the association and causal interrelationship among these economic variables at different frequencies and timeframes in Thailand. The study objectives are structured to answer the following questions: (a) does the selected macroeconomic indicators impact CO2 emissions in Thailand? (b) if so, why? Findings reveal; (i) Negative and insignificant link between CO2 emissions and urbanization. (ii) GDP growth affects CO2 emissions positively. (iii) The interconnection between CO2 emissions and energy usage is positive. (iv) Gross capital formation impact CO2 emissions positively. (v) Positive interconnection exists between financial development and CO2 emissions in Thailand. Additionally, the wavelet coherence result provides a supportive evidence for the ARDL long run result. Based on these findings, policy directions were suggested.
Mostrar más [+] Menos [-]Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment Texto completo
2022
Insian, Wittawat | Yabueng, Nuttipon | Wiriya, Wan | Chantara, Somporn
Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 μm, classified based on aerodynamic diameter (dₐₑ) as fine PMs (0.43 μm ≤ dₐₑ < 2.1 μm) and coarse PMs (2.1 μm ≤ dₐₑ < 9.0 μm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62–68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65–0.43 μm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5–6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65–0.43 μm) and a small peak at a coarse size range (5.8–4.7 μm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10⁻⁴ (rural) and 6.80 × 10⁻⁵ (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.
Mostrar más [+] Menos [-]Effect of silver nanoparticles and chlorine reaction time on the regulated and emerging disinfection by-products formation Texto completo
2022
Na-Phatthalung, Warangkana | Keaonaborn, Dararat | Jaichuedee, Juthamas | Keawchouy, Suthiwan | Sinyoung, Suthatip | Musikavong, Charongpun
Silver nanoparticles (AgNPs) are used in many industries for multiple applications that inevitably release AgNPs into surface water sources. The formation kinetics of disinfection by-products (DBPs) in the presence of AgNPs was investigated during chlorination. Experiments were carried out with raw water from a canal in Songkhla, Thailand, which analyzed the formation potential (FP) of trihalomethanes FP (THMFP), iodo-trihalomethanes FP (I-THMFP), haloacetonitriles FP (HANFP), and trichloronitromethane FP. Increased AgNP concentrations by 10–20 mg/L led to a higher specific formation rate of chloroform which is described by zero- and first-order kinetics. The increase in the specific formation of chloroform as increasing chlorine contact time could enhance both the THMFP rates and the maximum THMFP concentrations in all tested AgNPs. The AgNP content did not have a significant influence on I-THMFP and HANFP concentrations or speciation. The I-THMFP and HANFP increased in a short-chlorination time as mostly complete formation <12 h, and then the rate decreased as the reaction proceeded. The levels of THMs and many emerging DBPs are related to the presence of AgNPs in chlorinated water and chlorine reaction time. THMFP had a higher impact on integrated toxic risk value (ITRV) than I-THMFP and HANFP because of the chlorination of water with AgNPs. The chlorine reaction time was more effective for increasing the ITRV of THMFP than the level of AgNPs. Water treatment plants should control the DBPs that cause possible health risks from water consumption by optimizing water distribution time.
Mostrar más [+] Menos [-]The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand Texto completo
2021
Boongla, Yaowatat | Chanonmuang, Phuvasa | Hata, Mitsuhiko | Furuuchi, Masami | Phairuang, Worradorn
Atmospheric size-classified particles in sizes ranging from small to nanoparticles (PM₀.₁) are reported for Rangsit City in the Bangkok Metropolitan Region (BMR) of Thailand, for October 2019 (wet season) and January–February 2020 (dry season). The sampling involved the use of a PM₀.₁ cascade air sampler to determine the mass concentration. The PMs consisted of six stages including TSP–PM₁₀, PM₂.₅₋₁₀, PM₁.₀₋₂.₅, PM₀.₅₋₁.₀, PM₀.₅₋₁.₀ and PM₀.₁. Elemental carbon (EC) and organic carbon (OC) were evaluated by a carbon analyzer following the IMPROVE_TOR protocol. The average PM₀.₁ mass concentrations were found to be 13.47 ± 0.79 (wet season) and 18.88 ± 3.99 (dry season) μg/m³, respectively. The average OC/EC ratio for the rainy season was lower than that in the dry season. The char-EC/soot-EC ratios were consistently below 1 for the PM₀.₁ fraction in both seasons indicating that vehicular traffic appeared to be the main emission source. However, the influence of open biomass burning on fine and coarse PM particles on local air pollution was found to be an important issue during the wet season. In addition, long-range transport from other countries may also contribute to the carbon content in the Bangkok Metropolitan Region (BMR) atmosphere during the dry season. The higher secondary organic carbon to organic carbon (SOC/OC) ratio in the dry season is indicative of the contribution of secondary sources to the formation of PM, especially finer particles. A strong correlation between OC and EC in nanoparticles was found, indicating that they are derived from sources of constant emission, likely the diesel engines. Conversely, the OC and EC correlation for other size-specific PMs decreased during the dry season, indicating that these emission sources were more varied.
Mostrar más [+] Menos [-]Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan Texto completo
2021
Weber, Annika M. | Baxter, Bridget A. | McClung, Anna | Lamb, Molly M. | Becker-Dreps, Sylvia | Vilchez, Samuel | Koita, Ousmane | Wieringa, Frank | Ryan, Elizabeth P.
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg⁻¹) and lowest in Guatemala (0.017 mg kg⁻¹) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Mostrar más [+] Menos [-]Tracing riverine sulfate source in an agricultural watershed: Constraints from stable isotopes Texto completo
2021
Liu, Jinke | Han, Guilin
The sulfate pollution in water environment gains more and more concerns in recent years. The discharge of domestic, municipal, and industrial wastewaters increases the riverine sulfate concentrations, which may cause local health and ecological problems. To better understand the sources of sulfate, this study collected water samples in a typical agricultural watershed in East Thailand. The source apportionment of sulfide was conducted by using stable isotopes and receptor models. The δ³⁴SSO₄ value of river water varied from 1.2‰ to 16.4‰, with a median value of 8.9‰. The hydrochemical data indicated that the chemical compositions of Mun river water were affected by the anthropogenic inputs and natural processes such as halite dissolution, carbonate, and silicate weathering. The positive matrix factorization (PMF) model was not suitable to trace source of riverine sulfate, because the meaning of the extracted factors seems to be vague. Based on the elemental ratio and isotopic composition, the inverse model yielded the relative contribution of sulfide oxidation (approximately 46.5%), anthropogenic input (approximately 41.5%), and gypsum dissolution (approximately 12%) to sulfate in Mun river water. This study indicates that the selection of models for source apportionment should be careful. The large contribution of anthropogenic inputs calls an urgent concern of the Thai government to establish effective management strategies in the Mun River basin.
Mostrar más [+] Menos [-]A 150-year record of black carbon (soot and char) and polycyclic aromatic compounds deposition in Lake Phayao, north Thailand Texto completo
2021
Han, Yongming | Bandowe, Benjamin A Musa | Schneider, Tobias | Pongpiachan, Siwatt | Ho, Steven Sai Hang | Wei, Chong | Wang, Qiyuan | Xing, Li | Wilcke, Wolfgang
An improved understanding of the historical variation in the emissions and sources (biomass burning, BB vs. fossil fuel, FF combustion) of soot and char, the two components of black carbon (BC), and polycyclic aromatic compounds (PACs) may help in assessing the environmental effects of the Atmospheric Brown Cloud (ABC) in SE Asia. We therefore determined historical variations of the fluxes of soot, char, and PACs (24 polycyclic aromatic hydrocarbons (PAHs), 12 oxygenated PAHs (OPAHs), and 4 azaarenes) in a dated sediment core (covering the past ∼150 years) of Phayao Lake in Thailand. The soot fluxes have been increasing in recent times, but at a far lower rate than previously estimated based on BC emission inventories. This may be associated with a decreasing BB contribution as indicated by the decreasing char fluxes from old to young sediments. The fluxes of high- and low-molecular-weight (HMW and LMW) PAHs, OPAHs, and azaarenes all sharply increased after ∼1980, while the ΣLMW-/ΣHMW-PAHs ratios decreased, further supporting the reduction in BB contribution at the expense of increasing FF combustion emissions. We also suggest that the separate record of char and soot, which has up to now not been done in aerosol studies, is useful to assess the environmental effects of ABC because of the different light-absorbing properties of these two BC components. Our results suggest that besides the establishment of improved FF combustion technology, BB must be further reduced in the SE Asian region in order to weaken the ABC haze.
Mostrar más [+] Menos [-]Transport and dilution of fluvial antibiotic in the Upper Gulf of Thailand Texto completo
2021
Wang, Aobo | Guo, Xinyu | Morimoto, Akihiko | Maetani, Kana | Tanoue, Rumi | Tong-U-Dom, Siraporn | Buranapratheprat, Anukul
A three-dimensional hydrodynamic-antibiotic model is developed to investigate the transport and dilution of sulfamethoxazole (SMX) in the Upper Gulf of Thailand (UGoT). The simulation produced a spatially averaged annual mean SMX concentration of 0.58 μgm−3, which varied slightly between seasons assuming a temporally constant river SMX loading observed in August. In contrast, the horizontal distribution of SMX concentrations strongly varied with season because of the changing residual currents. In addition, SMX is diluted to concentrations lower than 10% of those in river waters a short distance offshore of the estuaries. To better understand this behavior, we examined the relationship between salinity and SMX concentrations in the UGoT. The annual budget demonstrates that 98% of SMX in the UGoT is removed by natural decomposition. As the concentrations of fluvial pollutants in the UGoT depend on their river loading and decomposition rates, functions were derived to predict pollutant concentrations and flushing times based on the river input flux and half-life.
Mostrar más [+] Menos [-]Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects Texto completo
2020
Phairuang, Worradorn | Inerb, Muanfun | Furuuchi, Masami | Hata, Mitsuhiko | Tekasakul, Surajit | Phīraphong Thīkhasakun,
In this study, size-fractionated particulate matters (PM) down to ultrafine (PM₀.₁) particles were collected using a cascade air sampler with a PM₀.₁ stage, in Hat Yai city, Songkhla province, southern Thailand during the year 2018. The particle-bound carbonaceous aerosols (CA) as elemental carbon (EC) and organic carbon (OC) were quantified with the thermal/optical reflectance method following the IMPROVE_TOR protocol. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3 and PyO) in the size-fractionated PM were evaluated to discern OC and EC correlations as well as those between char-EC and soot-EC. The results showed that biomass burning, motor vehicle, and secondary organic aerosols (SOC) all contributed to the size-fractionated PM. The OC/EC ratios ranged from 2.90 to 4.30 over the year, with the ratios of PM₂.₅₋₁₀ being the highest, except during the open biomass burning period. The concentration of CA was found to increase during the pre-monsoon season and had its peak value in the PM₀.₅₋₁.₀ fraction. The long-range transport of PMs from Indonesia, southwest of Thailand toward southern Thailand became more obvious during the pre-monsoon season. Transported plumes from biomass burning in Indonesia may increase the concentration of OC and EC both in the fine (PM₀.₅₋₁.₀ and PM₁.₀₋₂.₅) and coarse (PM₂.₅₋₁₀ and PM>₁₀) fractions. The OC fraction in PM₀.₁ was also shown to be significantly affected by the transported plumes during the pre-monsoon season. Good OC and EC correlations (R² = 0.824–0.915) in the fine particle fractions indicated that they had common sources such as fossil fuel combustion. However, the lower and moderate correlations (R² = 0.093–0.678) among the coarser particles suggesting that they have a more complex pattern of emission sources during the dry and monsoon seasons. This indicates the importance of focusing emission control strategies on different PM particle sizes in southern Thailand.
Mostrar más [+] Menos [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks Texto completo
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
Mostrar más [+] Menos [-]