Refinar búsqueda
Resultados 1-10 de 51
Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification
2021
Chaparro, Marcos A.E.
Pollution-tolerant lichens are recognized ecological indicators of air pollution in cities, which can also collect airborne anthropogenic particles in their tissues. Harmful (sub)micron-sized magnetites are a ubiquitous component of air particle pollution, adversely impacting human health. In this work, in situ magnetic susceptibility κᵢₛ of well-characterized ultrafine magnetite and lichen thalli were measured to quantify the amount of airborne magnetic particles (AMP) after calibration and to assess the lichen's decontamination over time. Up to 2850 magnetic measurements were carried out in twenty-nine transplanted lichens (collected in urban and clean areas) from winter 2020 to winter 2021. Before the transplants, their initial κᵢₛ values were 0.23–9.45 × 10⁻⁵ SI, representing AMP contents of 0.1–4.6 mg in lichen thalli. After lichens were transplanted to a shared site, the magnetic signals evidenced short-term increases and long-term decreases. After three, five and nine months, the AMP loss is more pronounced for transplanted lichens from polluted (e.g., AMP_5-months loss = 0.59 mg) than clean (= 0.08 mg) sites. Rainfall influenced the lichen's decontamination between seasons. In situ measurements and lichens offer a valued and time-saving methodology for biomonitoring harmful airborne particles simply and effectively.
Mostrar más [+] Menos [-]The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach
2019
Felline, S. | Del Coco, L. | Kaleb, S. | Guarnieri, G. | Fraschetti, S. | Terlizzi, A. | Fanizzi, F.P. | Falace, A.
Glyphosate, as a broad-spectrum herbicide, is frequently detected in water and several studies have investigated its effects on several freshwater aquatic organisms. Yet, only few investigations have been performed on marine macroalgae. Here, we studied both the metabolomics responses and the effect on primary production in the endemic brown algae Fucus virsoides exposed to different concentration (0, 0.5, 1.5 and 2.5 mg L⁻¹) of a commercial glyphosate-based herbicide, namely Roundup®. Our results show that Roundup® significantly reduced quantum yield of photosynthesis (Fᵥ/Fₘ) and caused alteration in the metabolomic profiles of exposed thalli compared to controls. Together with the decrease in the aromatic amino acids (phenylalanine and tyrosine), an increase in shikimate content was detected. The branched-amino acids differently varied according to levels of herbicide exposure, as well as observed for the content of choline, formate, glucose, malonate and fumarate. Our results suggest that marine primary producers could be largely affected by the agricultural land use, this asking for further studies addressing the ecosystem-level effects of glyphosate-based herbicides in coastal waters.
Mostrar más [+] Menos [-]Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes
2017
Pinho, P. | Barros, C. | Augusto, S. | Pereira, M.J. | Máguas, C. | Branquinho, C.
Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales.
Mostrar más [+] Menos [-]Ammonium and nitrate tolerance in lichens
2010
Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen.
Mostrar más [+] Menos [-]Effects of ammonia from livestock farming on lichen photosynthesis
2010
Paoli, Luca | Pirintsos, Stergios Arg | Kotzabasis, Kiriakos | Pisani, Tommaso | Navakoudis, Eleni | Loppi, Stefano
This study investigated if atmospheric ammonia (NH3) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 μg/m3 (at a sheep farm), ca. 15 μg/m3 (60 m from the sheep farm) and ca. 2 μg/m3 (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH3 is susceptible to this pollutant in the gas-phase. The parameter PIABS, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH3 than the FV/FM ratio, one of the most commonly used stress indicators.
Mostrar más [+] Menos [-]Lichen transplants as indicators of gaseous elemental mercury concentrations
2022
Monaci, Fabrizio | Ancora, Stefania | Paoli, Luca | Loppi, Stefano | Wania, Frank
Lichens play an important role in the biogeochemical cycling of mercury (Hg) and are commonly used as indicators of Hg enrichment in remote and anthropogenically impacted environments. To assess their capacity for Hg uptake and accumulation, we determined the concentration of gaseous elemental mercury (GEM) in air and the concentration of total Hg (THg) in transplanted thalli of two lichen species. Lichen transplants and passive air samplers (PASs) were concurrently deployed, side by side, at 10 sites within an abandoned mining area, characterized by large gradients in atmospheric Hg contamination. Highly variable time-weighted GEM concentrations determined by the PASs, ranging from 17 to 4,200 ng/m³, were mirrored by generally high Hg concentrations in transplanted thalli of both Xanthoria parietina (174–8,800 ng/g) and Evernia prunastri (143–5,500 ng/g). Hg concentrations in the two species co-varied linearly indicating about 60% greater Hg accumulation in X. parietina than in E. prunastri. Whereas Hg uptake in the fruticose E. prunastri increased linearly with GEM, a power law equation with a fractional exponent described the uptake in the foliose X. parietina. Extrapolating the relationships observed here to higher GEM levels yielded concentrations in lichen that agree very well with those measured in an earlier fumigation experiment performed under laboratory-controlled conditions. The uptake model of X. parietina was further verified by correctly estimating GEM concentrations from the THg measured in autochthonous thalli collected from the urban area adjacent to the mine site. Passive sampling can effectively provide time-weighted data of suitable spatial resolution to quantitatively describe GEM assimilation by lichens. Therefore, the combined use of passive sampling and lichen transplants can contribute to a more comprehensive understanding of the role of lichens, and potentially also of other cryptogams, in the deposition of atmospheric Hg to terrestrial ecosystems.
Mostrar más [+] Menos [-]Elemental composition of Usnea sp lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica
2016
Bubach, Débora | Catán, Soledad Perez | Di Fonzo, Carla | Dopchiz, Laura | Arribére, Maria | Ansaldo, Martin
Several pollutants, which include metals, are present in the Antarctic atmosphere, snow, marine and terrestrial organisms. This work reports the elements incorporated by Usnea sp thalli in Potter Peninsula, 25 de Mayo (King George) Island, South Shetlands, Antarctica. Geological origin was analyzed as possible sources of elements. For this purpose, correlations were done using a geochemical tracer, principal component analysis and enrichment factors were computed. Lithophile elements from particulate matter were present in most of the sampling sites. Bromine, Se and Hg showed the highest enrichment factors suggesting other sources than the particulate matter. Mercury values found in Usnea sp were in the same range as those reported for Deception Island (South Shetlands) and remote areas from the Patagonia Andes.
Mostrar más [+] Menos [-]Controlling the main source of green tides in the Yellow Sea through the method of biological competition
2022
Fu, Meilin | Cao, Shichao | Li, Jingshi | Zhao, Shuang | Liu, Jinlin | Zhuang, Minmin | Qin, Yutao | Gao, Song | Sun, Yuqing | Kim, Jang Kyun | Zhang, Jianheng | He, Peimin
Macroalgal blooms have become a serious threat to public health, fisheries, ecosystems, and global economies. Since 2007, in the Yellow Sea, China, Ulva green tides have occurred for 15 consecutive years. However, effective control methods are limited. Ulva prolifera attached to Neopyropia aquaculture rafts are believed to be the main source of blooms, therefore eliminating Ulva from rafts could effectively prevent and control blooms. We investigated this phenomenon and showed that macroalgae germination was significantly inhibited by dried Neopyropia yezoensis at concentrations of 1.2, 2.4, and 4.8 g DW⁻¹. Also, the inhibitory effects of dried N. yezoensis toward U. prolifera gametes at 2.4 and 4.8 g DW⁻¹ were >90% at day 21. N. yezoensis culture filtrates and thalli were also used to determine dose-dependent inhibition effects on U. prolifera gamete germination. Both were potent and significantly inhibited germination at 1.75–7 g FW⁻¹; the inhibitory effect 7 g FW⁻¹ was >90% at day 21. As N. yezoensis thalli exhibited high inhibitory effects in laboratory experiments, we also performed field studies. N. yezoensis on ropes displayed high inhibitory effects on Ulva attachment and growth. Thus N. yezoensis powder, culture filtrates, and thalli displayed strong inhibitory effects on U. prolifera gametes, suggesting N. yezoensis attachment to ropes could be used to control green tides at the source.
Mostrar más [+] Menos [-]Spatial and temporal distribution of trace elements in Padina pavonica from the northern Adriatic Sea
2021
Orlando Bonaca, Martina | Pitacco, Valentina | Bajt, Oliver | Falnoga, Ingrid | Hudobivnik, Marta Jagodic | Mazej, Darja | Šlejkovec, Zdenka | Bonanno, Giuseppe
Chemical pollution is a major environmental concern especially in coastal areas, having adverse impacts on marine organisms and ecosystem services. Macroalgae can accumulate trace elements, but available studies are restricted to a limited number of elements and species. The goal of this research was to assess, seasonally, the concentrations of 22 elements in the brown alga Padina pavonica from monitoring sampling sites in Slovenian waters. The concentration of most elements in thalli differed significantly between spring and autumn, with generally higher levels in autumn samples. However, it was not possible to correlate these concentrations with the ecological status of macroalgae. The maximum values set by European regulations for the potentially hazardous As, Cd and Hg in food and feed were never exceeded, while Pb concentrations were slightly higher. The results show that P. pavonica can act as an effective bioindicator of chemical pollution.
Mostrar más [+] Menos [-]Competitive advantages of Ulva prolifera from Pyropia aquaculture rafts in Subei Shoal and its implication for the green tide in the Yellow Sea
2020
Hao, Ya | Qu, Tongfei | Guan, Chen | Zhao, Xinyu | Hou, Chengzong | Tang, Xuexi | Wang, Ying
The physiological characteristics of Ulva prolifera and Blidingia sp. during two pre-bloom stages (March & May) were compared to evaluate the competitive advantage of U. prolifera on Pyropia aquaculture rafts in Subei Shoal. (1) Compared to Blidingia sp., U. prolifera had a lower growth rate, chlorophyll content, photosynthetic efficiency, and antioxidant capacity in March. (2) In May, various indicators of U. prolifera's physiological function improved significantly, while the antioxidant capacity of Blidingia sp. decreased significantly. Large lipidic globules in U. prolifera cells became scattered small lipidic globules in May, which indicated a decrease in lipid membrane peroxidation. (3) In U. prolifera, the ratio of buoyancy to gravity of per unit volume was 1.73, and the bubbles inside the thalli provided 60% of the total buoyancy. Buoyancy generated by the inflatable structure of U. prolifera allowed this species to float after being separated from the rafts.
Mostrar más [+] Menos [-]