Refinar búsqueda
Resultados 1-10 de 89
Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium Texto completo
2022
He, Xian | Nkoh, Jackson Nkoh | Shi, Ren-yong | Xu, Ren-kou
To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.
Mostrar más [+] Menos [-]Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions Texto completo
2022
Lee, Hyung-Min | Park, Rokjin J.
South Korea has experienced a rapid increase in ozone concentrations in surface air together with China for decades. Here we use a 3-D global chemical transport model, GEOS-Chem nested over East Asia (110 E - 140 E, 20 N–50 N) at 0.25° × 0.3125° resolution, to examine locally controllable (domestic anthropogenic) versus uncontrollable (background) contributions to ozone air quality at the national scale for 2016. We conducted model simulations for representative months of each season: January, April, July, and October for winter, spring, summer, and fall and performed extensive model evaluation by comparing simulated ozone with observations from satellite and surface networks. The model appears to reproduce observed spatial and temporal ozone variations, showing correlation coefficients (0.40–0.87) against each observation dataset. Seasonal mean ozone concentrations in the model are the highest in spring (39.3 ± 10.3 ppb), followed by summer (38.3 ± 14.4 ppb), fall (31.2 ± 9.8 ppb), and winter (24.5 ± 7.9 ppb), which is consistent with that of surface observations. Background ozone concentrations obtained from a sensitivity model simulation with no domestic anthropogenic emissions show a different seasonal variation in South Korea, showing the highest value in spring (46.9 ± 3.4 ppb) followed by fall (38.2 ± 3.7 ppb), winter (33.0 ± 1.9 ppb), and summer (32.1 ± 6.7 ppb). Except for summer, when the photochemical formation is dominant, the background ozone concentrations are higher than the seasonal ozone concentrations in the model, indicating that the domestic anthropogenic emissions play a role as ozone loss via NOₓ titration throughout the year. Ozone air quality in South Korea is determined mainly by year-round regional background contributions (peak in spring) with summertime domestic ozone formation by increased biogenic VOCs emissions with persistent NOₓ emissions throughout the year. The domestic NOₓ emissions reduce MDA8 ozone around large cities (Seoul and Busan) and hardly increase MDA8 in other regions in spring, but it increases MDA8 across the country in summer. Therefore, NOₓ reduction can be effective in control of MDA8 ozone in summer, but it can have rather countereffect in spring.
Mostrar más [+] Menos [-]Decisive role of ozone formation control in winter PM2.5 mitigation in Shenzhen, China Texto completo
2022
Tang, Meng-Xue | Huang, Xiao Feng | Sun, Tian-Le | Cheng, Yong | Luo, Yao | Chen, Zheng | Lin, Xiao-Yu | Cao, Li-Ming | Zhai, Yu-Hong | He, Ling-Yan
During the COVID-19 lockdown, atmospheric PM₂.₅ in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O₃). We found that, however, the daytime concentrations of secondary aerosols during the lockdown period and normal period were rather similar when the corresponding odd oxygen (Oₓ≡O₃+NO₂, an indicator of photochemical processing avoiding the titration effect of O₃ by freshly emitted NO) were at similar levels. Therefore, reduced Oₓ, rather than the large reduction in precursors, was a direct driver to achieve the decline in secondary aerosols. Moreover, Oₓ was also found to determine the spatial distribution of intercity PM₂.₅ levels in winter PRD. Thus, an effective strategy for winter PM₂.₅ mitigation should emphasize on control of winter O₃ formation in the PRD and other regions with similar conditions.
Mostrar más [+] Menos [-]Stronger secondary pollution processes despite decrease in gaseous precursors: A comparative analysis of summer 2020 and 2019 in Beijing Texto completo
2021
To control the spread of COVID-19, China implemented a series of lockdowns, limiting various offline interactions. This provided an opportunity to study the response of air quality to emissions control. By comparing the characteristics of pollution in the summers of 2019 and 2020, we found a significant decrease in gaseous pollutants in 2020. However, particle pollution in the summer of 2020 was more severe; PM₂.₅ levels increased from 35.8 to 44.7 μg m⁻³, and PM₁₀ increased from 51.4 to 69.0 μg m⁻³ from 2019 to 2020. The higher PM₁₀ was caused by two sandstorm events on May 11 and June 3, 2020, while the higher PM₂.₅ was the result of enhanced secondary formation processes indicated by the higher sulfate oxidation rate (SOR) and nitrate oxidation rate (NOR) in 2020. Higher SOR and NOR were attributed mainly to higher relative humidity and stronger oxidizing capacity. Analysis of PMₓ distribution showed that severe haze occurred when particles within Bin2 (size ranging 1–2.5 μm) dominated. SO₄²⁻₍₁/₂.₅₎ and SO₄²⁻₍₂.₅/₁₀₎ remained stable under different periods at 0.5 and 0.8, respectively, indicating that SO₄²⁻ existed mainly in smaller particles. Decreases in NO₃⁻₍₁/₂.₅₎ and increases in NO₃⁻₍₂.₅/₁₀₎ from clean to polluted conditions, similar to the variations in PMₓ distribution, suggest that NO₃⁻ played a role in the worsening of pollution. O₃ concentrations were higher in 2020 (108.6 μg m⁻³) than in 2019 (96.8 μg m⁻³). Marked decreases in fresh NO alleviated the titration of O₃. Furthermore, the oxidation reaction of NO₂ that produces NO₃⁻ was dominant over the photochemical reaction of NO₂ that produces O₃, making NO₂ less important for O₃ pollution. In comparison, a lower VOC/NOₓ ratio (less than 10) meant that Beijing is a VOC-limited area; this indicates that in order to alleviate O₃ pollution in Beijing, emissions of VOCs should be controlled.
Mostrar más [+] Menos [-]Insights into chemical composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze River Delta region, China during the COVID-19 outbreak control period Texto completo
2020
Jia, Haohao | Huo, Juntao | Fu, Qingyan | Duan, Yusen | Lin, Yanfen | Jin, Xiaodan | Hu, Xue | Cheng Jinping,
To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM₂.₅) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019–23 January 2020) and control period (CP, 24 January–23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM₂.₅ and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM₂.₅ was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM₂.₅ from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.
Mostrar más [+] Menos [-]Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil Texto completo
2020
Mandal, Sandip | Pu, Shengyan | He, Lingling | Ma, Hui | Hou, Deyi
Biochar has recently been fascinating for research in many environment areas due to its potential applications. In this research, graphene, and nano zero-valent iron (nZVI) were integrated with biochar and used for copper immobilization in the soil. Initially, the biomass feedstock was pyrolyzed under N₂ atmosphere from 150 to 650 °C and immersed in an aqueous solution containing graphene, and then impregnated with nZVI. Laboratory characterization with different instruments (eg. SEM, TEM, XRD, UV–Vis, VSM, and XPS) showed that graphene sheets and reactive nZVI were loaded on the biochar surface during the development process. The 450 °C was considered as optimum pyrolysis temperature based on the effective surface properties of the obtain biochar material. Boehm titration and functional group analysis confirmed the presence of carboxylic groups, phenolic groups in the corn stack biochar supported graphene oxide/nZVI (CTBC-GO/nZVI). Thermogravimetric analysis showed that nZVI incorporation to biochar surface could improve thermal stability as compared to graphene oxide incorporated biochar and pristine biochar. The material was utilized for copper (Cu) immobilization in the soil and a comparative evaluation was established on the basis of efficiency. The soil experiment showed that the CTBC-GO/nZVI has a superior immobilization efficiency of copper than pristine biochar and GO@BC. The available Cu content decreased by > 65% in CTBC-GO/nZVI amended soil after 14 days. Sequential extraction procedure (SEP) results suggested that CTBC-GO/nZVI promoted the conversion of more accessible Cu into the less accessible and bioavailable forms to reduce the toxicity of Cu. Therefore, CTBC-GO/nZVI composite is a promising and effective amendment for immobilizing Cu in contaminated soils and improving soil properties.This work can put forward a strategy to develop magnetic biochar composites and an application towards toxic heavy metals immobilization in soil.
Mostrar más [+] Menos [-]Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species Texto completo
2017
Du, Huihui | Qu, ChenChen | Liu, Jing | Chen, Wenli | Cai, Peng | Shi, Zhihua | Yu, Xiao-Ying | Huang, Qiaoyun
Bacteria–phyllosilicate complexes are commonly found in natural environments and are capable of immobilizing trace metals. However, the molecular binding mechanisms of heavy metals to these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive Bacillus subtilis, Gram-negative Pseudomonas putida and their binary mixtures with montmorillonite using surface complexation model, Cd K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and isothermal titration calorimetry (ITC). We have shown that larger amounts of Cd are adsorbed by B. subtilis than by P. putida at pH<∼6, and Cd sorption that binding to phosphate groups plays a more important role in P. putida than in B. subtilis. This remind us that we should consider the microbe species when predict the biochemical behavior of trace metals in microbe-bearing environments. The observed Cd adsorption on the binary bacteria–clay composites was more than that predicted based on the component additivity approach. When taking bacteria–clay (1:1 mass ratio) as a representative example, an approximately 68%:32% metal distribution between the bacterial and mineral fraction was found. Both the EXAFS and ITC fits showed that the binding stoichiometry for Cd-carboxyl/phosphate was smaller in the binary mixtures than that in pure bacteria. We proposed that the significant deviations were possibly due to the physical-chemical interaction between the composite fractions that might reduce the agglomeration of the clay grains, increase the negative surface charges, and provide additional bridging of metals ions between bacterial cells and clays.
Mostrar más [+] Menos [-]Insights into the impacts of dissolved organic matter of different origins on bioaccumulation and translocation of per- and polyfluoroalkyl substances (PFASs) in wheat Texto completo
2022
Liu, Siqian | Zhou, Jian | Guo, Jia | Gao, Juefu | Jia, Yibo | Li, Shunli | Wang, Tiecheng | Zhu, Lingyan
Per- and polyfluoroalkyl substances (PFASs) have been found to be widely present in soil. Dissolved organic matter (DOM) in soil are supposed to greatly affect the bioavailability of PFASs in soil. Herein, hydroponic experiments were conducted to understand the impacts of two kinds of typical DOM, bovine serum albumin (BSA) and humic acid (HA), on the uptake and translocation of legacy PFASs and their emerging alternatives, perfluorooctane sulfonic acid (PFOS), perfluorooctane acid (PFOA), perfluorohexane sulfonic (PFHxS) and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) in wheat (Triticum aestivum L.). The results indicated that both HA and BSA significantly inhibited the bioaccumulation and translocation of PFASs in the roots and shoots of wheat, and the impacts of BSA were greater than HA. This difference was explained by the greater binding affinities of the four PFASs with BSA than with HA, as evidenced by the equilibrium dialysis and isothermal titration calorimetry (ITC) analyses. It was noting that inhibition impacts of the BSA-HA mixture (1:1) were lower than BSA alone. The results of Fourier transform infrared (FT-IR) spectroscopy and excitation-emission matrix (EEM) fluorescence spectroscopy suggested that HA could bind with the fluorescent tryptophan residues in BSA greatly, competing the binding sites with PFASs and forming a cover on the surface of BSA. As a result, the binding of PFASs with BSA-HA complex was much lower than that with BSA, but close to HA. The results of this study shed light on the impacts of DOM in soil on the bioaccumulation and translocation of PFASs in plants.
Mostrar más [+] Menos [-]The effects of H2O2- and HNO3/H2SO4-modified biochars on the resistance of acid paddy soil to acidification Texto completo
2022
He, Xian | Hong, Zhi-neng | Shi, Ren-yong | Cui, Jia-qi | Lai, Hong-wei | Lu, Hai-long | Xu, Ren-kou
Biochar was prepared from rice straw and modified with 15% H₂O₂ and 1:1 HNO₃/H₂SO₄, respectively. The unmodified biochars and HCl treated biochars for carbonate removal were used as control. The biochars were added to the acid paddy soil collected from Langxi, Anhui Province, China at the rate of 30 g/kg. The paddy soil was flooded and then air-dried, and soil pH and Eh were measured in situ with pH electrode and platinum electrode during wet-dry alternation. Soil pH buffering capacity (pHBC) was determined by acid-base titration after the wet-dry treatment. Then, the simulated acidification experiments were carried out to study the changing trends of soil pH, base cations and exchangeable acidity. The results showed that soil pHBC was effectively increased and the resistance of the paddy soil to acidification was apparently enhanced with the incorporation of H₂O₂- and HNO₃/H₂SO₄-modified biochars. Surface functional groups on biochars were mainly responsible for enhanced soil resistance to acidification. During soil acidification, the protonation of organic anions generated by dissociation of these functional groups effectively retarded the decline of soil pH. The modification of HNO₃/H₂SO₄ led to greater increase in carboxyl functional groups on the biochars than H₂O₂ modification and thus HNO₃/H₂SO₄-modified biochars showed more enhancement in soil resistance to acidification than H₂O₂-modified biochars. After a wet-dry cycle, the pH of the paddy soil incorporated with HNO₃/H₂SO₄-modified biochar increased apparently. Consequently, the addition of HNO₃/H₂SO₄-modified biochar can be regarded as a new method to alleviate soil acidification. In short, the meaning of this paper is to provide a new method for the amelioration of acid paddy soils.
Mostrar más [+] Menos [-]Functional group diversity for the adsorption of lead(Pb) to bacterial cells and extracellular polymeric substances Texto completo
2022
Qu, Chenchen | Yang, Shanshan | Mortimer, Monika | Zhang, Ming | Chen, Jinzhao | Wu, Yichao | Chen, Wenli | Cai, Peng | Huang, Qiaoyun
Bacteria and their secreted extracellular polymeric substances (EPS) are widely distributed in ecosystems and have high capacity for heavy metal immobilization. The knowledge about the molecular-level interactions with heavy metal ions is essential for predicting the behavior of heavy metals in natural and engineering systems. This comprehensive study using potentiometric titration, Fourier-transform infrared (FTIR) spectroscopy, isothermal titration calorimetry (ITC) and X-ray absorption fine structure (XAFS) was able to reveal the functional diversity and adsorption mechanisms for Pb onto bacteira and the EPS in greater detail than ever before. We identified mono-carboxylic, multi-carboxylic, phosphodiester, phosphonic and sulfhydryl sites and found the partitioning of Pb to these functional groups varied between gram-negative and gram-positive bacterial strains, the soluble and cell-bound EPS and Pb concentrations. The sulfhydryl and phosphodiester groups preferentially complexed with Pb in P. putida cells, while multifunctional carboxylic groups promoted Pb adsorption in B. subtilis cells and the protein fractions in EPS. Though the functional site diversity, the adsorption of Pb to organic ligands occurred spontaneously through a universal entropy increase and inner-sphere complexation mechanism. The functional group scale knowledge have implications for the modeling of heavy metal behavior in the environment and application of these biological resources.
Mostrar más [+] Menos [-]