Refinar búsqueda
Resultados 1-10 de 49
Uptake of terbuthylazine and its medium polar metabolites into maize plants.
1995
Gayler S. | Trapp S. | Matthies M. | Schroll R. | Behrendt H.
Non-noble metal (Ni, Cu)-carbon composite derived from porous organic polymers for high-performance seawater electrolysis
2021
Gopi, Sivalingam | Vadivel, Selvamani | Pinto, Leandro M.C. | Syed, Asad | Kathiresan, Murugavel | Yun, Kyusik
The hydrothermal preparation of o-dianisidine and triazine interlinked porous organic polymer and its successive derivatisation via metal infusion (Ni, Cu) under hydrothermal and calcination conditions (700 °C) to yield pristine (ANIPOP-700) and Ni/Cu decorated porous carbon are described here (Ni-ANIPOP-700 and Cu-ANIPOP-700). To confirm their chemical and morphological properties, the as-prepared materials were methodically analyzed using solid state ¹³C and ¹⁵N NMR, X-ray diffraction, Raman spectroscopy, field emission scanning and high resolution transmission electron microscopic techniques, and x-ray photoelectron spectroscopy. Furthermore, the electrocatalytic activities of these electrocatalysts were thoroughly investigated under standard oxygen evolution (OER) and hydrogen evolution reaction (HER) conditions. The results show that all of the materials demonstrated significant activity in water splitting as well as displayed excellent stability (22 h) in both acidic (HER) and basic conditions (OER). Among the electrocatalysts reported in this study, Ni-ANIPOP-700 exhibited a lower overpotential η₁₀ of 300 mV in basic medium (OER) and 150 mV in acidic medium (HER), as well as a lower Tafel slope of 69 mV/dec (OER) and 181 mV/dec (HER), indicating 30% lower energy requirement for overall water splitting. Gas chromatography was used to examine the electrolyzed products.
Mostrar más [+] Menos [-]Potential transfer of organic pollutants from littoral plastics debris to the marine environment
2018
León, Víctor M. | García, Inés | González, Emilia | Samper, Raquel | Fernández-González, Verónica | Muniategui-Lorenzo, Soledad
Plastic polymers act as passive samplers in air system and concentrate hydrophobic organic contaminants by sorption or specific interactions, which can be transported to other systems such as the marine environment. In this study plastic debris was sampled in the surrounding area of a Mediterranean lagoon in order to determine the concentration of persistent and emerging organic contaminants. More specifically, desorption of 91 regulated and emerging organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorinated pesticides, current-use pesticides, personal care products, other pesticides and plastic additives) was characterized for the first 24 h from different polymers to seawater and the remaining content of these contaminants was also extracted by ultrasonic extraction with methanol. All samples were analyzed by Stir Bar Sorptive Extraction coupled to GC/MS. A significant fraction of sorbed contaminants in polymers was desorbed in the first 24 h, particularly for triazines and organophosphorus pesticides due to their lower hydrophobicity than other considered analytes. The remaining contaminants contained in plastics can be also transferred to seawater, sediments or biota. Considering 24 h desorbed fraction plus the remaining methanol extracted fraction, the highest transfer levels corresponded to personal care products, plastic additives, current-use pesticides and PAHs. This is the first study to show the relevance of the transport of organic contaminants on plastic debris from littoral areas to the marine environment.
Mostrar más [+] Menos [-]Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography
2010
Brentner, Laura B. | Mukherji, Sachiyo T. | Walsh, Susan A. | Schnoor, Jerald L.
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides × nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass. Phosphor imager autoradiography allows for rapid localization and quantification of RDX, TNT, and/or metabolites in plant tissues.
Mostrar más [+] Menos [-]Sequential biodegradation of TNT, RDX and HMX in a mixture
2009
Sagi-Ben Moshe, S. | Ronen, Z. | Dahan, O. | Weisbrod, N. | Groisman, L. | Adar, E. | Nativ, R.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR-DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater. TNT and its metabolites are cytotoxic for RDX and HMX-degrading bacteria in polluted soil.
Mostrar más [+] Menos [-]Distribution and ecotoxicity of chlorotriazines in the Scheldt Estuary (B-Nl)
2007
Noppe, H. | Ghekiere, A. | Verslycke, T. | Wulf, E de | Verheyden, K. | Monteyne, E. | Polfliet, K. | Caeter, P van | Janssen, C.R. | Brabander, H.F de
As part of the Endis-Risks project, the current study describes the occurrence of the chlorotriazine pesticides atrazine, simazine and terbutylazine in water, sediment and suspended matter in the Scheldt estuary (B-Nl) from 2002 to 2005 (3 samplings a year, 8 sampling points). Atrazine was found at the highest concentrations, varying from 10 to 736 ng/l in water and from 5 up to 10 ng/g in suspended matter. Simazine and terbutylazine were detected at lower concentrations. Traces of the targeted pesticides were also detected in sediments, but these were below the limit of quantification. As part of an ecotoxicological assessment, we studied the potential effect of atrazine on molting of Neomysis integer (Crustacea:Mysidacea), a resident invertebrate of the Scheldt Estuary and a proposed test organism for the evaluation of endocrine disruption. Following chronic exposure (3 weeks), atrazine did not significantly affect mysid molting at environmentally relevant concentrations (up to 1 μg/l). The water of the Scheldt estuary and its associated suspended solids are contaminated with chlorotriazines at concentrations that do not affect mysid molting.
Mostrar más [+] Menos [-]Halide salts accelerate degradation of high explosives by zerovalent iron
2007
Kim, J.S. | Shea, P.J. | Yang, J.E. | Kim, J.E.
Zerovalent iron (Fe0, ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl- and Br- was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br- was present in solution. The addition of halide ions promotes the degradation of high explosives by zerovalent iron.
Mostrar más [+] Menos [-]Assessing the eco-compatibility of new generation sunscreen products through a combined microscopic-molecular approach
2022
Varrella, Stefano | Danovaro, Roberto | Corinaldesi, Cinzia
There is now unequivocal evidence that sunscreen can severely affect marine ecosystems. However, so far, most studies have focused on the impact of single sunscreen ingredients rather than on the whole sunscreen products, which are released into the marine environment. In the present work, we investigated the ecological impact of six formulations, which represent the “new generation” organic UV filters such as diethylamino hydroxybenzoyl hexyl benzoate (DHHB), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), ethylhexyl triazone (EHT), and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), which are progressively replacing the “old generation” organic UV filters (e.g., oxybenzone, octinoxate) banned in several countries of the world. The six formulations tested were characterized by a different combination of ingredients, on a model species particularly sensitive to environmental alterations: the sea urchin, Paracentrotus lividus. We investigated the sea urchin responses both in terms of gene expression and anomalies in embryonic development. We found that all sunscreen products containing only MBBT, DHHB, BEMT, and EHT as UV filters, are more eco-compatible than those also containing also ES, or other ingredients such as emollients and texturizing compounds, which may act synergistically causing molecular stress, morphological anomalies, and ultimately possible death. Overall, the results presented here provide new insights on the effects of sunscreen products based on “new generation” UV filters, and highlights the urgency of testing complete formulations, rather than just specific UV filters to ascertain the eco-compatibility of sunscreen products, to effectively minimize their impact on marine ecosystems.
Mostrar más [+] Menos [-]Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution
2016
Wang, Bingyu | Lee, Linda S. | Wei, Chenhui | Fu, Heyun | Zheng, Shourong | Xu, Zhaoyi | Zhu, Dongqiang
Perfluoroalkyl acids (PFAAs) are highly stable, persistent, and ubiquitous in the environment with significant concerns growing with regards to both human and ecosystem health. Due to the high stability to both biological and chemical attack, the only currently feasible approach for their removal from water is adsorbent technology. The main objective of this study was to assess a covalent triazine-based framework (CTF) adsorbent for removal from aqueous solutions of perfluoro C4, C6, and C8 carboxylates and sulfonates including the two C8s most commonly monitored, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Adsorption affinity and capacity were quantified and compared to three commonly used sorbents: pulverized microporous activated carbon, single-walled carbon nanotubes, and Amberlite IRA-400 anion-exchange resin. CTF adsorbent exhibited pronouncedly higher adsorption affinity and capacity of PFAAs than other test sorbents. The remarkably strong adsorption to CTF can be attributed to the favored electrostatic interaction between the protonated triazine groups on the inner wall of the hydrophobic CTF pore and the negatively charged head groups of the PFAAs intercalated between the CTF layers. The homogeneous, nanosized pores (1.2 nm) of CTF hindered adsorption of a large-sized dissolved humic acid, thus minimizing the suppression of PFAA adsorption. Additionally, regeneration of CTF was easily accomplished by simply raising pH > 11, which inhibited the electrostatic adsorptive interaction of PFAAs.
Mostrar más [+] Menos [-]Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis
2013
Tekaya, Nadèje | Saiapina, Olga | Ben Ouada, Hatem | Lagarde, Florence | Ben Ouada, Hafedh | Jaffrezic-Renault, N. (Nicole)
Enzymatic conductometric biosensor, using immobilized Arthrospira platensis cells on gold interdigitated electrodes, for the detection of pesticides in water, was elaborated. Cholinesterase activity (AChE) was inhibited by pesticides and a variation of the local conductivity was measured after addition of the substrate acetylthiocholine chloride (AChCl). The Michaelis–Menten constant (Km) was evaluated to be 1.8 mM through a calibration curve of AChCl. Inhibition of AChE was observed with paraoxon-methyl, parathion-methyl, triazine and diuron with a detection limit of 10−18 M, 10−20 M, 10−20 M and 10−12 M, respectively and the half maximal inhibitory concentration (IC50) was determined at 10−16 M, 10−20 M, 10−18 M and 10−06 M, respectively. An important decrease of response time τ90% was recorded for AChE response towards AChCl after 30 min cell exposure to pesticides. Scanning electron microscopy images revealed a degradation of the cell surface in presence of pesticides at 10−06 M.
Mostrar más [+] Menos [-]