Refinar búsqueda
Resultados 1-10 de 57
Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos Texto completo
2024
Liu, Lulu | Wang, Fengzhong | Zhang, Zhong | Fan, Bei | Luo, Ying | Li, Ling | Zhang, Yifan | Yan, Zhihui | Kong, Zhiqiang | Francis, Frédéric | Li, Minmin
peer reviewed | Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L−1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life. © 2024 Elsevier Ltd
Mostrar más [+] Menos [-]Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles Texto completo
2021
Han, Lingxi | Kong, Xiabing | Xu, Min | Nie, Jiyun
Tebuconazole is a broad-spectrum triazole fungicide that has been extensively applied in agriculture, but its toxicity on soil ecology remains unknown after repeated introduction to soil. This study investigated the degradation of tebuconazole and the changes in soil microbial community composition and functional diversity as well as network complexity in soil repeatedly treated with tebuconazole. Tebuconazole degraded slowly as the degradation half-life initially increased and then decreased during the four repeated treatments. High concentration of tebuconazole treatment significantly delayed the degradation of tebuconazole. The soil microbial functional diversity in tebuconazole-treated soils showed an inhibition-recovery-stimulation trend with increasing treatment frequency, which was related to the increased degradation rates of tebuconazole. Tebuconazole significantly decreased soil microbial biomass and bacterial community diversity, and this decreasing trend became more pronounced with increasing treatment frequency and concentration. Moreover, tebuconazole significantly decreased soil bacterial community network complexity, particularly at high concentration of tebuconazole treatment. Notably, four bacterial genera, Methylobacterium, Burkholderia, Hyphomicrobium, and Dermacoccus, were identified as the potential tebuconazole-degrading bacteria, with the relative abundances in the tebuconazole treatment significantly increasing by 42.1–34687.1% compared to the control. High concentration of tebuconazole treatment delayed increases in the relative abundances of Methylobacterium but promoted those of Burkholderia, Hyphomicrobium and Dermacoccus. Additionally, repeated tebuconazole treatments improved only four metabolic pathways, cell motility, membrane transport, environmental information processing, and xenobiotics biodegradation and metabolism, which were associated with the degradation of tebuconazole. The above results indicated that repeated tebuconazole treatments resulted in the significant accumulation of residues and long-term negative effects on soil ecology, and also emphasized the potential roles of dominant indigenous microbial bacteria in the degradation of tebuconazole.
Mostrar más [+] Menos [-]Birds feeding on tebuconazole treated seeds have reduced breeding output Texto completo
2021
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Mostrar más [+] Menos [-]Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio) Texto completo
2020
Jia, Ming | Teng, Miaomiao | Tian, Sinuo | Yan, Jin | Meng, Zhiyuan | Yan, Sen | Li, Ruisheng | Zhou, Zhiqiang | Zhu, Wentao
Penconazole is a widely used chiral triazole bactericide that may adversely affect the environment. It contains two corresponding enantiomers and there may be differences in toxicity between the isomers. Therefore, in this study, we exposed zebrafish embryos to different concentrations of the penconazole enantiomer to study the developmental toxicity and neurotoxicity of penconazole on zebrafish and the difference in toxicity between enantiomers. The results showed that penconazole exposure caused adverse effects on zebrafish embryos, such as autonomous motor abnormalities, heart rate slowing, and increased deformity, resulting in significant developmental toxicity. Meanwhile, also caused the zebrafish larvae to slow movement, the neurotransmitter content and nervous system related gene expression significantly changed, which proved that penconazole also caused neurotoxicity to zebrafish. Interestingly, our results also clearly show that (+)-penconazole is significantly more toxic to zebrafish than (−)-penconazole at the same concentration, whether it is developmental toxicity or neurotoxicity, which suggests that we should focus on (+)-penconazole more when conducting toxicological studies on penconazole.
Mostrar más [+] Menos [-]Triazoles and aromatase: The impact of copper cocktails Texto completo
2020
Jaklová Dytrtová, Jana | Bělonožníková, Kateřina | Jakl, Michal | Ryšlavá, Helena
Triazoles are used as antifungal agents, they mostly inhibit two enzymes: 14α-demethylase and aromatase. These enzymes are utilised also in other species and therefore the affection in non-target species in the environment is expected as well. Besides, triazoles are often being applied in a mixture and they can also interact with other substances present. This study clarifies how three selected representative triazoles (tebuconazole, penconazole and cyproconazole) interact with each other (group effect) and in mixtures (cocktail effect) with copper, essential/toxic for all organisms. Within the experiments on electrospray and collision-induced dissociations (both ESI-MS), it has been found that the fragments correspond to typical triazole metabolites. For their formation, the presence of copper ions is crucial. The inhibitory effect of Cu cocktails on aromatase enzymatic activity has been studied. The presence of Cu ions together with triazole(s) significantly increases the inhibitory effect on aromatase activity. The highest inhibitory effect (more than 60%) on aromatase activity is produced by cocktails containing penconazole and Cu ions, namely by penconazole/Cu and penconazole/tebuconazole/Cu. The reactivity of triazoles in groups is not significantly affected by the interactions among them. Additionally, the role of triazoles in copper Fenton reaction regulation has been observed and described. These changes may be attributed to the formation and stabilization of the complexes with the central Cu ion, with usually one, two or three triazolic ligands, depending on the mixture. The study demonstrates that the interaction of triazoles and Cu ions is a complex process; their impact on metabolism seems to be rather extensive and must be evaluated in the context of biochemical reactions.
Mostrar más [+] Menos [-]In situ removal of four organic micropollutants in a small river determined by monitoring and modelling Texto completo
2019
Brunsch, Andrea F. | Langenhoff, Alette A.M. | Rijnaarts, Huub H.M. | Ahring, Alexander | ter Laak, Thomas L.
Organic micropollutants (OMPs) are widely detected in surface waters. So far, the removal processes of these compounds in situ in river systems are not yet totally revealed. In this study, a combined monitoring and modelling approach was applied to determine the behaviour of 1-H benzotriazole, carbamazepine, diclofenac and galaxolide in a small river system. Sewage treatment plant effluents and the receiving waters of the river Swist were monitored in 9 dry weather sampling campaigns (precipitation < 1 mm on the sampling day itself and <5 mm total precipitation two days before the sampling) during different seasons over a period of 3 years. With the results gained through monitoring, mass balances have been calculated to assess fate in the river. With the DWA Water Quality Model, OMP concentrations in the river were successfully simulated with OMP characteristics gained through literature studies. No removal was determined for 1-H benzotriazole and carbamazepine, whereas diclofenac showed removal that coincided with light intensity. Moreover, modelling based on light sensitivity of diclofenac also suggested relevant degradation at natural light conditions. These two approaches suggest removal by photodegradation. The highest removal in the river was detected for galaxolide, presumably due to volatilisation, sorption and biodegradation. Furthermore, short-term concentration variability in the river was determined, showing that daily concentration patterns are influenced by dynamics of sewage treatment plant effluent volumes and removal processes in the river.
Mostrar más [+] Menos [-]Enantioselective effects of the chiral fungicide tetraconazole in wheat: Fungicidal activity and degradation behavior Texto completo
2019
Tong, Zhou | Dong, Xu | Yang, Shasha | Sun, Mingna | Gao, Tongchun | Duan, Jinsheng | Cao, Haiqun
Tetraconazole, a chiral triazole fungicide, is widely used for the prevention of plant disease in wheat fields. However, the chirality of pesticides like tetraconazole can cause diverse biological responses. Therefore, it is important that research is conducted to investigate the enantioselective effects of chiral enantiomers in this regard. The absolute configurations of two tetraconazole enantiomers were initially confirmed by ECD (Electrostatic circular dichroism). The bioassay test showed that the fungicidal activity of (R)-(+)-tetraconazole against two pathogens (R. cerealis and F. graminearum) was approximately 1.49–1.98 times greater than that for (S)-(−)- tetraconazole. Following recovery experiments, a modified QuEchERS (Quick, easy, cheap, effective, rugged, safe) method was established using UPLC-MS/MS (ultra-performance liquid chromatography tandem mass spectrometry). The mean recoveries from plant and soil sample ranged from 78.9% to 100.5% with intraday relative standard (RSDᵣ) values of 0.8%–6.9% and interday relative standard (RSDR) values of 3.0%–5.2% respectively. The stereoselective degradation of tetraconazole in wheat meant that (S)-(−)-tetraconazole was more rapidly degraded than (R)-(+)-tetraconazole. Conversely, (R)-(+)-tetraconazole was preferentially degraded in wheat soil. These results will provide us with a greater understanding when assessing future environmental risk assessments and strategies that invoke pesticide reduction.
Mostrar más [+] Menos [-]Environmental occurrence and distribution of organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas Texto completo
2018
Apel, Christina | Tang, Jianhui | Ebinghaus, Ralf
Environmental occurrence and distribution of organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas Texto completo
2018
Apel, Christina | Tang, Jianhui | Ebinghaus, Ralf
Organic UV stabilizers and UV filters are applied to industrial materials and cosmetics worldwide. In plastics they prevent photo-induced degradation, while in cosmetics they protect human skin against harmful effects of UV radiation. This study reports on the occurrence and distribution of organic UV stabilizers and UV filters in the surface sediment of the Chinese Bohai and Yellow Seas for the first time. In total, 16 out of 21 analyzed substances were positively detected. Concentrations ranged from sub-ng/g dw to low ng/g dw. The highest concentration of 25 ng/g dw was found for octocrylene (OC) in the Laizhou Bay. In the study area, characteristic composition profiles could be identified. In Korea Bay, the dominating substances were OC and ethylhexyl salicylate (EHS). All other analytes were below their method quantification limit (MQL). Around the Shandong Peninsula, highest concentrations of benzotriazole derivatives were observed in this study with octrizole (UV-329) as the predominant compound, reaching concentrations of 6.09 ng/g dw. The distribution pattern of UV-329 and bumetrizole (UV-326) were related (Pearson correlation coefficient r > 0.98, p « 0.01 around the Shandong Peninsula), indicating an identical input pathway and similar environmental behavior.
Mostrar más [+] Menos [-]Organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas in 2016 Texto completo
2018
Apel, Christina | Tang, Jianhui | Ebinghaus, Ralf
Organic UV stabilizers and UV filters are applied to industrial materials and cosmetics worldwide. In plastics they prevent photo-induced degradation, while in cosmetics they protect human skin against harmful effects of UV radiation. This study reports on the occurrence and distribution of organic UV stabilizers and UV filters in the surface sediment of the Chinese Bohai and Yellow Seas for the first time. In total, 16 out of 21 analyzed substances were positively detected. Concentrations ranged from sub-ng/g dw to low ng/g dw. The highest concentration of 25 ng/g dw was found for octocrylene (OC) in the Laizhou Bay. In the study area, characteristic composition profiles could be identified. In Korea Bay, the dominating substances were OC and ethylhexyl salicylate (EHS). All other analytes were below their method quantification limit (MQL). Around the Shandong Peninsula, highest concentrations of benzotriazole derivatives were observed in this study with octrizole (UV-329) as the predominant compound, reaching concentrations of 6.09 ng/g dw. The distribution pattern of UV-329 and bumetrizole (UV-326) were related (Pearson correlation coefficient r > 0.98, p << 0.01 around the Shandong Peninsula), indicating an identical input pathway and similar environmental behavior.
Mostrar más [+] Menos [-]Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation Texto completo
2017
Zhuang, Shulin | Lv, Xuan | Pan, Liumeng | Lü, Liping | Ge, Zhiwei | Wang, Jiaying | Wang, Jingpeng | Liu, Jinsong | Liu, Weiping | Zhang, Chunlong
Benzotriazole ultraviolet stabilizers (BUVSs) are prominent chemicals widely used in industrial and consumer products to protect against ultraviolet radiation. They are becoming contaminants of emerging concern since their residues are frequently detected in multiple environmental matrices and their toxicological implications are increasingly reported. We herein investigated the antiandrogenic activities of eight BUVSs prior to and after human CYP3A4-mediated metabolic activation/deactivation by the two-hybrid recombinant human androgen receptor yeast bioassay and the in vitro metabolism assay. More potent antiandrogenic activity was observed for the metabolized UV-328 in comparison with UV-328 at 0.25 μM ((40.73 ± 4.90)% vs. (17.12 ± 3.00)%), showing a significant metabolic activation. In contrast, the metabolized UV-P at 0.25 μM resulted in a decreased antiandrogenic activity rate from (16.08 ± 0.95)% to (6.91 ± 2.64)%, indicating a metabolic deactivation. Three mono-hydroxylated (OH) and three di-OH metabolites of UV-328 were identified by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS), which were not reported previously. We further surmised that the hydroxylation of UV-328 occurs mainly at the alicyclic hydrocarbon atoms based on the in silico prediction of the lowest activation energies of hydrogen abstraction from C-H bond. Our results for the first time relate antiandrogenic activity to human CYP3A4 enzyme-mediated hydroxylated metabolites of BUVSs. The biotransformation through hydroxylation should be fully considered during the health risk assessment of structurally similar analogs of BUVSs and other emerging contaminants.
Mostrar más [+] Menos [-]Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology Texto completo
2016
Storck, Veronika | Lucini, Luigi | Mamy, Laure | Ferrari, Federico | Papadopoulou, Evangelia S. | Nikolaki, Sofia | Karas, Panagiotis A. | Servien, Remi | Karpouzas, Dimitrios G. | Trevisan, Marco | Benoit, Pierre | Martin-Laurent, Fabrice
Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology Texto completo
2016
Storck, Veronika | Lucini, Luigi | Mamy, Laure | Ferrari, Federico | Papadopoulou, Evangelia S. | Nikolaki, Sofia | Karas, Panagiotis A. | Servien, Remi | Karpouzas, Dimitrios G. | Trevisan, Marco | Benoit, Pierre | Martin-Laurent, Fabrice
Pesticides generate transformation products (TPs) when they are released into the environment. These TPs may be of ecotoxicological importance. Past studies have demonstrated how difficult it is to predict the occurrence of pesticide TPs and their environmental risk. The monitoring approaches mostly used in current regulatory frameworks target only known ecotoxicologically relevant TPs. Here, we present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. We used an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry, followed by structural proposition through a molecular structure correlation program. In silico molecular typology was then used to group TPs according to common molecular descriptors and to indirectly elucidate their environmental parameters by analogy to known pesticide compounds with similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in soil during a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected, and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be investigated towards a more comprehensive environmental risk assessment scheme.
Mostrar más [+] Menos [-]Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology Texto completo
2016
Storck, Veronika | Lucini, Luigi | Mamy, Laure | Ferrari, Federico | Papadopoulou, Evangelina | Nikolaki, Sofia | Karas, Panagiotis | Servien, Rémi | Karpouzas, Dimitrios | Trevisan, Marco | Benoit, Pierre | Martin-Laurent, Fabrice | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Università cattolica del Sacro Cuore [Milano] (Unicatt) | Spinoff universita cattolica del sacro cuore | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | University of Thessaly [Volos] (UTH) | University of Patras | ToxAlim (ToxAlim) ; Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | European Project: 324349,EC:FP7:PEOPLE,FP7-PEOPLE-2012-IAPP,LOVE-TO-HATE(2013)
International audience | Once released into the environment, pesticides generate transformation products (TPs) which may be of (eco-)toxicological importance. Past studies have demonstrated the difficulty to predict pesticide TP occurrence and their environmental risk by monitoring-driven approaches mostly used in current regulatory frameworks targeting only known toxicologically relevant TPs. We present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. This approach applies an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry and structural elucidation through a molecular structure correlation program. In silico molecular typology was then used to group the detected TPs according to common molecular descriptors and to indirectly elucidate their environmental properties by analogy to known pesticide compounds having similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be intensively studied towards a more comprehensive environmental risk assessment scheme.
Mostrar más [+] Menos [-]Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology Texto completo
2016
Storck, Veronika | Lucini, Luigi | Mamy, Laure | Ferrari, Federico | Papadopoulou, Evangelina | Nikolaki, Sofia | Karas, Panagiotis | Servien, Rémi | Karpouzas, Dimitrios | Trevisan, Marco | Benoit, Pierre | Martin-Laurent, Fabrice | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Università cattolica del Sacro Cuore [Milano] (Unicatt) | Spinoff universita cattolica del sacro cuore | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | University of Thessaly [Volos] (UTH) | University of Patras | ToxAlim (ToxAlim) ; Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | European Project: 324349,EC:FP7:PEOPLE,FP7-PEOPLE-2012-IAPP,LOVE-TO-HATE(2013)
International audience | Once released into the environment, pesticides generate transformation products (TPs) which may be of (eco-)toxicological importance. Past studies have demonstrated the difficulty to predict pesticide TP occurrence and their environmental risk by monitoring-driven approaches mostly used in current regulatory frameworks targeting only known toxicologically relevant TPs. We present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. This approach applies an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry and structural elucidation through a molecular structure correlation program. In silico molecular typology was then used to group the detected TPs according to common molecular descriptors and to indirectly elucidate their environmental properties by analogy to known pesticide compounds having similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be intensively studied towards a more comprehensive environmental risk assessment scheme.
Mostrar más [+] Menos [-]