Refinar búsqueda
Resultados 1-10 de 34
Comparing with oxygen, nitrate simplifies microbial community assembly and improves function as an electron acceptor in wastewater treatment
2022
Zheng, Lei | Wang, Xue | Ren, Mengli | Yuan, Dongdan | Tan, Qiuyang | Xing, Yuzi | Xia, Xuefeng | Xie, En | Ding, Aizhong
Biochemical oxidation and reduction are key processes in treating biological wastewater and they require the presence of electron acceptors. The functional impact of electron acceptors on microbiomes provides strategies for improving the treatment efficiency. This research focused on two of the most important electron acceptors, nitrate and oxygen. Molecule ecological network, null model, and functional prediction based on high-throughput sequencing were used to analyze the microbiomes features and assembly mechanism. The results revealed nitrate via the homogeneous selection (74.0%) decreased species diversity, while oxygen via the homogeneous selection (51.1%) and dispersal limitation (29.6%) increased the complexity of community structure. Microbes that were more strongly homogeneously selected for assembly included polyphosphate accumulating organisms (PAOs), such as Pseudomonas and variovorax in the nitrate impacted community; Pseudomonas, Candidatus_Accumulibacter, Thermomonas and Dechloromonas, in the oxygen impacted community. Nitrate simplified species interaction and increased the abundance of functional genes involving in tricarboxylic acid cycle (TCA cycle), electron transfer, nitrogen metabolism, and membrane transport. These findings contribute to our knowledge of assembly process and interactions among microorganisms and lay a theoretical basis for future microbial regulation strategies in wastewater treatment.
Mostrar más [+] Menos [-]Proteomic analysis revealed gender-specific responses of mussels (Mytilus galloprovincialis) to trichloropropyl phosphate (TCPP) exposure
2020
Zhong, Mingyu | Wu, Huifeng | Li, Fei | Shan, Xiujuan | Ji, Chenglong
Trichloropropyl phosphate (TCPP) is a halogenated organophosphate ester that is widely used as flame retardants and plasticizers. In this study, gender-specific accumulation and responses in mussel Mytilus galloprovincialis to TCPP exposure were focused and highlighted. After TCPP (100 nmol L⁻¹) exposure for 42 days, male mussels showed similar average bioaccumulation (37.14 ± 6.09 nmol g⁻¹ fat weight (fw)) of TCPP with that in female mussels (32.28 ± 4.49 nmol g⁻¹ fw). Proteomic analysis identified 219 differentially expressed proteins (DEPs) between male and female mussels in control group. There were 52 and 54 DEPs induced by TCPP in male and female mussels, respectively. Interestingly, gender-specific DEPs included 37 and 41 DEPs induced by TCPP in male and female mussels, respectively. The proteomic differences between male and female mussels were related to protein synthesis and degradation, energy metabolism, and functions of cytoskeleton and motor proteins. TCPP influenced protein synthesis, energy metabolism, cytoskeleton functions, immunity, and reproduction in both male and female mussels. Protein-protein interaction (PPI) networks indicated that protein synthesis and energy metabolism were the main biological processes influenced by TCPP. However, DEPs involved in these processes and their interaction patterns were quite different between male and female mussels. Basically, twelve ribosome DEPs which directly or indirectly interacted were found in protein synthesis in TCPP-exposed male mussels, while only 3 ribosome DEPs (not interacted) in TCPP-exposed female mussels. In energy metabolism, only 4 DEPs (with the relatively simple interaction pattern) mainly resided in fatty acid metabolism, butanoate/propanoate metabolism and glucose metabolism were discovered in TCPP-exposed male mussels, and more DEPs (with multiple interactions) functioned in TCA cycle and pyruvate/glyoxylate/dicarboxylate metabolism were found in TCCP-exposed female mussels. Taken together, TCPP induced gender-specific toxicological effects in mussels, which may shed new lights on further understanding the toxicological mechanisms of TCPP in aquatic organisms.
Mostrar más [+] Menos [-]Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii
2019
Beauvais-Flück, Rebecca | Slaveykova, Vera I. | Cosio, Claudia
Microalgae are widely used as representative primary producers in ecotoxicology, while macrophytes are much less studied. Here we compared the bioavailability and cellular toxicity pathways of 2 h-exposure to 10−6 mol L−1 Cu in the macrophyte Elodea nuttallii and the green microalga Chlamydomonas reinhardtii.Uptake rate was similar but faster in the algae than in the macrophyte, while RNA-Sequencing revealed a similar number of regulated genes. Early-regulated genes were congruent with expected adverse outcome pathways for Cu with Gene Ontology terms including gene regulation, energy metabolism, transport, cell processes, stress, antioxidant metabolism and development. However, the gene regulation level was higher in E. nuttallii than in C. reinhardtii and several categories were more represented in the macrophyte than in the microalga. Moreover, several categories including oxidative pentose phosphate pathway (OPP), nitrate metabolism and metal handling were only found for E. nuttallii, whereas categories such as cell motility, polyamine metabolism, mitochondrial electron transport and tricarboxylic acid cycle (TCA) were unique to C. reinhardtii. These differences were attributed to morphological and metabolic differences and highlighted dissimilarities between a sessile and a mobile species. Our results highlight the efficiency of transcriptomics to assess early molecular responses in biota, and the importance of studying more aquatic plants for a better understanding on the impact and fate of environmental contaminants.
Mostrar más [+] Menos [-]Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans
2019
Kim, Hyung-Min | Lee, Dong-Kyu | Long, Nguyen Phuoc | Kwon, Sung Won | Park, Jeong Hill
Nanoplastics are widely used in modern life, for example, in cosmetics and daily use products, and are attracting concern due to their potential toxic effects on environments. In this study, the uptake of nanopolystyrene particles by Caenorhabditis elegans (C. elegans) and their toxic effects were evaluated. Nanopolystyrene particles with sizes of 50 and 200 nm were prepared, and the L4 stage of C. elegans was exposed to these particles for 24 h. Their uptake was monitored by confocal microscopy, and various phenotypic alterations of the exposed nematode such as locomotion, reproduction and oxidative stress were measured. In addition, a metabolomics study was performed to determine the significantly affected metabolites in the exposed C. elegans group. Exposure to nanopolystyrene particles caused the perturbation of metabolites related to energy metabolism, such as TCA cycle intermediates, glucose and lactic acid. Nanopolystyrene also resulted in toxic effect including induction of oxidative stress and reduction of locomotion and reproduction. Collectively, these findings provide new insights into the toxic effects of nanopolystyrene particles.
Mostrar más [+] Menos [-]Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether
2018
Chen, Jie | Li, Kelun | Le, X Chris | Zhu, Lizhong
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography−mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7–12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%–67.1%) and 19 organic acids (by 7.8%–70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Mostrar más [+] Menos [-]Pyruvate carboxylase as a sensitive protein biomarker for exogenous steroid chemicals
2014
Liang, Xue-fang | Martyniuk, Christopher J. | Cheng, Gang | Zha, Jinmiao | Wang, Zijian
Assessing protein responses to endocrine disrupting chemicals is critical for understanding the mechanisms of chemical action and for the assessment of hazards. In this study, the response of the liver proteome of male rare minnows (Gobiocypris rarus) treated with 17β-estradiol (E2) and females treated with 17α-methyltestosterone (MT) were analyzed. A total of 23 and 24 proteins were identified with differential expression in response to E2 and MT, respectively. Pyruvate carboxylase (PC) was the only common differentially expressed protein in both males and females after E2- and MT-treatments. The mRNA as well as the protein levels of PC were significantly down-regulated compared with that of the controls (p < 0.05). Our results suggest that endocrine disruptors interfere with genes and proteins of the TCA cycle and PC may be a sensitive biomarker of exposure to exogenous steroid chemicals in the liver of fish.
Mostrar más [+] Menos [-]Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori
2022
Xu, Shiliang | Hao, Zhihua | Li, Yinghui | Zhou, Yanyan | Shao, Ruixi | Chen, Rui | Zheng, Meidan | Xu, Yusong | Wang, Huabing
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Mostrar más [+] Menos [-]Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis
2022
Patel, Monika | Parida, Asish Kumar
Arsenic (As) is a highly toxic metalloid adversely affecting the environment, human health, and crop productivity. The present study assessed the synergistic effects of salinity and As on photosynthetic attributes, stomatal regulations, and metabolomics responses of the xero-halophyte Salvadora persica to decipher the As-salinity cross-tolerance mechanisms and to identify the potential metabolites/metabolic pathways involved in cross-tolerance of As with salinity. Salinity and As stress-induced significant stomatal closure in S. persica suggests an adaptive response to decrease water loss through transpiration. NaCl supplementation improved the net photosynthetic rate (by +39%), stomatal conductance (by +190%), water use efficiency (by +55%), photochemical quenching (by +37%), and electron transfer rate (54%) under As stress as compared to solitary As treatment. Our results imply that both stomatal and non-stomatal factors account for a reduction in photosynthesis under high salinity and As stress conditions. A total of 64 metabolites were identified in S. persica under salinity and/or As stress, and up-regulation of various metabolites support early As-salinity stress tolerance in S. persica by improving antioxidative defense and ROS detoxification. The primary metabolites such as polyphenols (caffeic acid, catechin, gallic acid, coumaric acid, rosmarinic acid, and cinnamic acid), amino acids (glutamic acid, cysteine, glycine, lysine, phenylalanine, and tyrosine), citrate cycle intermediates (malic acid, oxalic acid, and α-ketoglutaric acid), and most of the phytohormones accumulated at higher levels under combined treatment of As + NaCl compared to solitary treatment of As. Moreover, exogenous salinity increased glutamate, glycine, and cysteine, which may induce higher synthesis of GSH-PCs in S. persica. The metabolic pathways that were significantly affected in response to salinity and/or As include inositol phosphate metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, amino acid metabolism, and glutathione metabolism. Our findings indicate that inflections of various metabolites and metabolic pathways facilitate S. persica to withstand and grow optimally even under high salinity and As conditions. Moreover, the addition of salt enhanced the arsenic tolerance proficiency of this halophyte.
Mostrar más [+] Menos [-]iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium
2020
Lu, Zhen | Wang, Shuang | Ji, Chenglong | Li, Fei | Cong, Ming | Shan, Xiujuan | Wu, Huifeng
Cadmium (Cd) is an important heavy metal pollutant in the Bohai Sea. Mitochondria are recognized as the key target for Cd toxicity. However, mitochondrial responses to Cd have not been fully investigated in marine fishes. In this study, the mitochondrial responses were characterized in gills of juvenile flounder Paralichthys olivaceus treated with two environmentally relevant concentrations (5 and 50 μg/L) of Cd for 14 days by determination of mitochondrial membrane potential (MMP), observation of mitochondrial morphology and quantitative proteomic analysis. Both Cd treatments significantly decreased MMPs of mitochondria from flounder gills. Mitochondrial morphologies were altered in Cd-treated flounder samples, indicated by more and smaller mitochondria. iTRAQ-based proteomic analysis indicated that a total of 128 proteins were differentially expressed in both Cd treatments. These proteins were basically involved in various biological processes in gill mitochondria, including mitochondrial morphology and import, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), primary bile acid biosynthesis, stress resistance and apoptosis. These results indicated that dynamic regulations of energy homeostasis, cholesterol metabolism, stress resistance, apoptosis, and mitochondrial morphology in gill mitochondria might play significant roles in response to Cd toxicity. Overall, this study provided a global view on mitochondrial toxicity of Cd in flounder gills using iTRAQ-based proteomics.
Mostrar más [+] Menos [-]UPLC-TOF-MS/MS metabolomics analysis of zebrafish metabolism by spirotetramat
2020
Zhang, Jie | Qian, Le | Wang, Chen | Teng, Miaomiao | Duan, Manman | Chen, Xiangguang | Li, Xuefeng | Wang, Chengju
Spirotetramat, a member of tetronic and tetramic acid derivatives, is a unique insecticide and acaricide. Although the effect on zebrafish embryos lipid biosynthesis of spirotetramat has been characterized, the energy metabolism and toxic effect mechanism warrant further investigation. To investigate the toxic mechanism of spirotetramat on energy metabolism, zebrafish embryos were exposed to 100, 500 and 1000 µg/L of spirotetramat for 4 days. Untargeted metabolomics showed the synthesis and degradation of ketone pathway metabolites (R)-3-Hydroxybutyric acid and Acetoacetate significantly decreased, as well as increasing the abundance of Anti-Acetyl Coenzyme A Carboxylase protein (ACC1). Down-regulation of the genes related to ß-oxidation and the tricarboxylic acid cycle in the embryos show decreased energy metabolism. Carnitine palmitoyltransferase 1 (CPT- I) significantly decreased while citrate synthase (CS) significantly increased. Additionally, mitochondrial lesions in embryos were found using electron microscopy. Our study provides novel and robust perspectives, which show that spirotetramat treatment in embryos leads to metabolic disturbances that adversely affect cellular energy homeostasis.
Mostrar más [+] Menos [-]