Refinar búsqueda
Resultados 1-10 de 23
Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
Mostrar más [+] Menos [-]Excretion from long glandular trichomes contributes to alleviation of cadmium toxicity in Nicotiana tabacum
2021
Zhang, Hongying | Lu, Xinyong | Wang, Zhaojun | Yan, Xiaoxiao | Cui, Hong
The B-type cyclin gene, CycB2, serves as a negative regulator of glandular trichome initiation. Through targeted knockout of NtCycB2 in Nicotiana tabacum cv. K326 using the CRISPR/Cas9 system, we created a variety, HK326, which exhibits significantly increased density and larger glandular heads of long glandular trichomes. Under Cd-stress, HK326 exhibited enhanced Cd tolerance, as demonstrated by a robust root system, strengthened cell membrane stability, and higher photosynthetic parameters. HK326 exhibited enhanced Cd-stress tolerance due to a strong excretion capacity of long glandular trichomes by forming calcium oxalate crystals. Cd mainly accumulated in tobacco shoots rather than remained in roots. Specifically, Cd levels of the HK326 shoot surface were nearly two-fold of those of K326, resulting in less Cd internally in the roots and shoots. Gene expression patterns revealed 11 Cd transporter genes that were upregulated after Cd-stress in shoots, roots, and trichomes. Among them, the NtHMA2 gene encoding heavy metal ATPases and involved in the transport of divalent heavy metal cations was expressed consistently and significantly higher in HK326 than K326, both before and after Cd-stress. NtHMA2 expression was strong in trichomes, moderate in shoots, while weak in roots. The results indicate that NtHMA2 may be involved in Cd excretion from glandular trichomes. Our findings suggest HK326 may be an appropriate candidate plant for Cd-stress tolerance.
Mostrar más [+] Menos [-]Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by μ-SXRF
2020
do Nascimento, Clístenes Williams Araujo | Hesterberg, Dean | Tappero, Ryan | Nicholas, Sarah | da Silva, Fernando Bruno Vieira
Odontarrhena muralis is one of the most promissing plant species for Ni phytomining, and soil amendments can further increase its Ni phytoextraction ability. Here we investigated whether Ni phytomining/phytoremediation using this Ni hyperaccumulator can benefit from applying citric acid to a serpentine soil that is naturally enriched in Ni (>1000 mg kg⁻¹). Synchrotron micro X-ray fluorescence (μ-SXRF) was used to image Ni and other metal distributions in whole fresh leaves of O. muralis. Leaf Ni accumulation in plants grown on citric acid-amended soil increased up to 55% while Co, Cr, Fe, Mn, and Zn concentrations were 4-, 14-, 6-, 7- and 1.3-fold higher than the control treatment. O. muralis presented high bioconcentration factors (leaf to soil concentration ratio) to Ni and Zn whereas Cr was seemingly excluded from uptake. The μ-SXRF images showed a uniform distribution of Ni, preferential localization of Co in the leaf tip, and clear concentration of Mn in the base of trichomes. The citric acid treatments strongly increased the Co fluoerescence intensity in the leaf tip and altered the spatial distribution of Mn across the leaf, but there was no difference in Ni fluorescence counts between the trichome-base region and the bulk leaf. Our data from a serpentine soil suggests that citrate treatment enhances Ni uptake, but Co is excreted from leaves even in low leaf concentrations, which can make Co phytoming using O. muralis unfeasible in natural serpentine soils.
Mostrar más [+] Menos [-]Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate foliar uptake of Pb in atmospheric PM2.5
2022
Gao, Pei-Pei | Zhang, Xiao-Meng | Xue, Pei-Ying | Dong, Jun-Wen | Dong, Yan | Zhao, Quan-Li | Geng, Li-Ping | Lu, Yin | Zhao, Jian-Jun | Liu, Wen-Ju
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most popular and frequently consumed leafy vegetables. It was found that atmospheric PM₂.₅-Pb contributes to Pb accumulation in the edible leaves of Chinese cabbage via stomata in North China during haze seasons with high concentrations of fine particulate matter in autumn and winter. However, it is unclear whether both stomata and trichomes co-regulate foliar transfer of PM₂.₅-Pb from atmospheric deposition to the leaf of Chinese cabbage genotypes with trichomes. Field and hydroponic experiments were conducted to investigate the effects of foliar uptake of PM₂.₅-Pb on Pb accumulation in leaves using two genotypes of Chinese cabbage, one without trichomes and one with trichomes. It was verified that open stoma is a prominent pathway of foliar PM₂.₅-Pb transfer in the short-term exposure for 6 h, contributing 74.5% of Pb accumulation in leaves, whereas Pb concentrations in the leaves of with-trichome genotype in the rosette stage were 6.52- and 1.04-fold higher than that of without-trichome genotype in greenhouse and open field, respectively, which suggests that stomata and trichomes co-regulate foliar Pb uptake of from atmospheric PM₂.₅. Moreover, subcellular Pb in the leaves was distributed in the following order of cytoplasm (53.8%) > cell wall (38.5%)> organelle (7.8%), as confirmed through high-resolution secondary ion mass spectrometry (NanoSIMS). The Leadmium™ Green AM dye manifested that Pb in PM₂.₅ entered cellular space of trichomes and accumulated in the basal compartment, enhancing foliar Pb uptake in the edible leaves of cabbage. The results of these experiments are evidence that both stomata and trichomes are important pathways in the regulation of foliar Pb uptake and translocation in Chinese cabbage.
Mostrar más [+] Menos [-]Litterfall mercury deposition in Atlantic forest ecosystem from SE – Brazil
2012
Teixeira, Daniel C. | Montezuma, Rita C. | Oliveira, Rogério R. | Silva-Filho, Emmanoel V.
Litterfall is believed to be the major flux of Hg to soils in forested landscapes, yet much less is known about this input on tropical environment. The Hg litterfall flux was measured during one year in Atlantic Forest fragment, located within Rio de Janeiro urban perimeter, in the Southeastern region of Brazil. The results indicated a mean annual Hg concentration of 238 ± 52 ng g⁻¹ and a total annual Hg deposition of 184 ± 8.2 μg m⁻² y⁻¹. The negative correlation observed between rain precipitation and Hg concentrations is probably related to the higher photosynthetic activity observed during summer. The total Hg concentration in leaves from the most abundant species varied from 60 to 215 ng g⁻¹. Hg concentration showed a positive correlation with stomatal and trichomes densities. These characteristics support the hypothesis that Tropical Forest is an efficient mercury sink and litter plays a key role in Hg dynamics.
Mostrar más [+] Menos [-]A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas
2021
Corada, Karina | Woodward, Huw | Alaraj, Hiba | Collins, C Matilda | de Nazelle, Audrey
Global urban planning has promoted green infrastructure (GI) such as street trees, shrubs or other greenspace in order to mitigate air pollution. Although considerable attention has been paid to understanding particulate matter (PM) deposition on GI, there has been little focus on identifying which leaf traits might maximise airborne PM removal. This paper examines existing literature to synthesize the state of knowledge on leaf traits most relevant to PM removal. We systematically reviewed measurement studies that evaluated particulate matter accumulated on leaves on street trees, shrubs green roofs, and green walls, for a variety of leaf traits. Our final selection included 62 papers, most from field studies and a handful from wind tunnel studies. The following were variously promoted as useful traits: coniferous needle leaves; small, rough and textured broadleaves; lanceolate and ovate shapes; waxy coatings, and high-density trichomes. Consideration of these leaf traits, many of which are also associated with drought tolerance, may help to maximise PM capture. Although effective leaf traits were identified, there is no strong or consistent evidence to identify which is the most influential leaf trait in capturing PM. The diversity in sampling methods, wide comparison groups and lack of background PM concentration measures in many studies limited our ability to synthesize results. We found that several ancillary factors contribute to variations in the accumulation of PM on leaves, thus cannot recommend that selection of urban planting species be based primarily on leaf traits. Further research into the vegetation structural features and standardization of the method to measure PM on leaves is needed.
Mostrar más [+] Menos [-]Individual effects of trichomes and leaf morphology on PM2.5 dry deposition velocity: A variable-control approach using species from the same family or genus
2021
Zhang, Xuyi | Lyu, Junyao | Zeng, Yuxiao | Sun, Ningxiao | Liu, Chunjiang | Yin, Shan
Urban green infrastructure is closely linked to the alleviation of pollution from atmospheric particulate matter. Although particle deposition has been shown to depend on leaf characteristics, the findings from earlier studies are sometimes ambiguous due to the lack of controlling variables. In this study, we investigated the impact of leaf morphological characteristics on PM₂.₅ dry deposition velocity by employing a control-variable approach. We focused on four indices: trichome density, petiole length, aspect ratio (width-to-length ratio), and fractal deviation. For each index, tree species were chosen from the same family or genus to minimize the influence of other factors and make a group of treatments for an individual index. The dry deposition velocities of PM₂.₅ were determined through application of an indirect method. The results revealed that the presence of leaf trichomes had a positive effect on PM₂.₅ dry deposition velocity, and a higher trichome density also led to a greater particle deposition velocity. Lower leaf aspect ratio, shorter petioles, and higher leaf fractal deviation were associated with greater PM₂.₅ dry deposition velocity. The control-variable approach allows to investigate the correlation between deposition velocity and a certain leaf characteristic independently while minimizing the effects of others. Thus, our study can clarify how a single leaf characteristic affects particle deposition velocity, and expound its potential mechanism more scientifically than the published studies. Our research points out the importance of controlling variables, and also provides ideas for future researches on related factors to be found. Meanwhile the results would help provide insight into design improvements or adaptive management for the alleviation of air pollution.
Mostrar más [+] Menos [-]Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator – Microsorum pteropus
2019
Lan, Xin-Yu | Yan, Yun-Yun | Yang, Bin | Li, Xin-Yuan | Xu, Fu-Liu
Microsorum pteropus is a novel potential Cd (cadmium) aquatic hyperaccumulator. In the present study, hydroponic experiments were conducted to assess the accumulation and subcellular distribution of Cd in the root, stem and leaf of M. pteropus. SEM (scanning electron microscopy) – EDX (energy dispersive X-ray fluorescence spectrometer) and TEM (transmission electron microscopy) were used to observe the ultrastructure of different tissues under 500 μM Cd exposure. After exposure to 500 μM Cd for 7 days, the root, stem and leaf of M. pteropus can accumulate to be > 400 mg/kg Cd in dry mass with no significant influence on the growth. In the root and leaf of M. pteropus, the Cd was more likely to store in the cell wall fraction. However, Cd in the stem was mainly stored in both the cell wall fraction and the cytoplasm fraction. Under SEM observation and EDX detection, 1) Cd was found to be sequestrated in the epidermis or chelated in the root cells, 2) no significant deposit spots were observed in the stem, 3) Cd was found in the trichome of the leaf, and the sporangium was not damaged. TEM observations revealed 1) possible Cd precipitations in the root cell and 2) no significant ultrastructure variation in the stem, and 3) the chloroplast retained its structure and was not affected by the Cd. M. pteropus showed great capacity for Cd accumulation without influencing growth. In addition, the ultrastructure of all the tissues was not damaged by the Cd. M. pteropus showed a great potential in phytoremediation in heavy metal polluted water solutions, and may provide new directions for the study of resistance mechanisms of aquatic hyperaccumulators.
Mostrar más [+] Menos [-]Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions
2015
Sánchez-López, Ariadna S. | Carrillo González, Rogelio | González Chávez, Ma. del Carmen Ángeles | Rosas-Saito, Greta Hanako | Vangronsveld, Jaco
Retention of particles containing potentially toxic elements (PTEs) on plants that spontaneously colonize mine tailings was studied through comparison of washed and unwashed shoot samples. Zn, Pb, Cd, Cu, Ni, Co and Mn concentrations were determined in plant samples. Particles retained on leaves were examined by Scanning Electronic Microscopy and energy dispersive X-Ray analysis. Particles containing PTEs were detected on both washed and unwashed leaves. This indicates that the thorough washing procedure did not remove all the particles containing PTEs from the leaf surface, leading to an overestimation of the concentrations of PTEs in plant tissues. Particularly trichomes and fungal mycelium were retaining particles. The quantity and composition of particles varied among plant species and place of collection. It is obvious that plants growing on toxic mine tailings form a physical barrier against particle dispersion and hence limit the spread of PTEs by wind.
Mostrar más [+] Menos [-]Mangrove propagule size and oil contamination effects: Does size matter?
2016
Naidoo, Gonasageran
Three mangroves species with differential propagule size, Avicennia marina (2.5±0.3cm), Bruguiera gymnorrhiza (16±2cm) and Rhizophora mucronata (36±3cm), were subjected to oil contamination. In a series of glasshouse and field experiments, the sediment, propagules, leaves and stems were oiled and growth monitored. Oiling of the propagules, leaves, internodes or sediment reduced plant height, leaf number, leaf chlorophyll content index and induced growth abnormalities, leaf abscission and mortality, with effects being greatest in A. marina, intermediate in R. mucronata and least in B. gymnorrhiza. The results suggest that the greater susceptibility of A. marina to oil is due to early shedding of the protective pericarp and rapid root and shoot development after detachment from the parent tree and not to propagule size. After seedling emergence, micromorphological factors such as presence of trichomes, salt glands and thickness of protective barriers influence oil tolerance.
Mostrar más [+] Menos [-]