Refinar búsqueda
Resultados 1-10 de 16
Ecofriendly application of coconut coir (Cocos nucifera) extract for silk dyeing
2022
Adeel, Shahid | Kiran, Shumaila | Shāhid, Muḥammad | Habib, Sajid Raza | Habib, Noman | Hussaan, Muhammad
The worldwide resurgence of natural dyes in all fields is due to the carcinogenic effects of effluent loads shed by synthetic industries. Coconut coir (Cocos nucifera) containing tannin as a source of natural colorants has been selected for coloration of bio-mordanted silk under the influence of ultrasonic radiations at various dyeing conditions. For extraction of tannin dye from cocos powder, different media were employed, and dyeing variables such as dyeing time, dye bath pH, dyeing bath temperature, and the effect of salts on dyeing were optimized. For achieving new shades with excellent color characteristics, bio-mordants in comparison with chemical mordants were employed. It has been found that acid-solubilized extract after ultrasonic treatment for 45 min has yielded high color strength, when coconut coir extract of 4 pH from 6g of cocos powder, containing 5g/100mL salt solution as exhaust agent, was used to dye silk at 75°C for 65 min. Among bio-mordants turmeric (K/S=13.828) and among chemical mordants iron has shown excellent results (K/S=2.0856). Physiochemical analysis of fabric before and after US treatment shows that there is no change in the chemical structure of the fabric. It is found that ultrasonic waves have excellent potential to isolate the colorant followed by dyeing and environmental friendly mordanting at optimal conditions, but also the usage of herbal-based plant anchors, i.e., bio-mordants, has made the natural dyeing process more sustainable and clean.
Mostrar más [+] Menos [-]Sustainable isolation of licorice (Glycyrrhiza glabra L.)-based yellow natural colorant for dyeing of bio-mordanted cotton
2022
Adeel, Shahid | Kiran, Shumaila | ʻAbbās, Maẓhar | Batool, Fatima | Hussaan, Muhammad | Amin, Nimra
Sustainability in the utilization of products in all fields particularly food textiles, solar cells, etc. is of prime concern to the global community. In this study, licorice (Glycyrrhiza glabra L.) as a source of herbal-based coloring agent for cotton dyeing has been explored under the influence of ultrasonic (US) waves. Methanolic extract of licorice bark after US treatment for 20 min has shown excellent color depth (K/S) onto ultrasonically treated cotton fabric at 65°Cfor 45 min. Applying bio-mordants, it has been found that acacia extract (1%), henna (5%), and pomegranate and turmeric extracts (7%) as pre-bio-mordant, whereas acacia, turmeric, and henna extracts (7%) and pomegranate extract (5%) as post-bio-mordants, exhibited superb color strength. Salts of Al (7%) and salts of Fe (3%) as pre chemical mordants, while salts of Al (3%) and salts of Fe (5%) as post chemical mordants, have given good results. Overall, it has been found that salt of Fe (3%) as pre-chemical mordant and extract of turmeric (7%) as post bio-mordant have shown superb color strength. It can be concluded that US treatment being an environmentally safe means has only improved the color strength of colorant onto cotton fabric and the adding of bio-mordants has contrived the method more sustainable.
Mostrar más [+] Menos [-]Nanocurcumin alleviates inflammation and oxidative stress in LPS-induced mastitis via activation of Nrf2 and suppressing TLR4-mediated NF-κB and HMGB1 signaling pathways in rats
2022
Lebda, Mohamed A. | Elmassry, Ingi H. | Taha, Nabil M. | Elfeky, Mohamed S.
Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is hydrophobic and rapidly eliminated from the body. However, nanoformulation of curcumin significantly improves its pharmacological activity by enhancing its hydrophobicity and oral bioavailability. Our study aimed to investigate the possible antioxidant and anti-inflammatory effects of nanocurcumin as a prophylactic against LPS-induced coliform mastitis in rat model, where LPS was extracted from a field strain of Escherichia coli (bovine mastitis isolate). The study was conducted on twenty lactating Wistar female rats divided into four equal groups, and the mastitis model was initiated by injection of LPS through the duct of the mammary gland. The results showed that nanocurcumin significantly attenuated the lipid peroxidation (MDA), oxidized glutathione, the release of pro-inflammatory cytokines (TNF-α and IL-1β), and the gene expression of TLR4, NF-κB p65, and HMGB1. Meanwhile, it improved the reduced glutathione level and Nrf2 activity and preserved the normal alveolar architecture. These findings suggested that nanocurcumin supplementation can be a promising potential protective approach for coliform mastitis.
Mostrar más [+] Menos [-]Eco-friendly approach towards isolation of colorant from Esfand for bio-mordanted silk dyeing
2022
Adeel, Shahid | Habib, Noman | Batool, Fatima | Rahman, Aamir | Aḥmad, Tanvīr | Amin, Nimra
Sustainability in all applied fields particularly in textiles is to protect our globe, environment, and community, where green dyed products are playing their role. For the current study, Esfand (Peganum harmala) has been explored using a green isolation tool, i.e., ultrasonic (U.S.) rays, and applied onto fabric. Different dyeing parameters have been explored statistically through response surface methodology by employing temperature (50–80°C), time (25–65 min), extract volume (15–55 mL), salt (1–5 g/100 mL), and dye bath pH (4–7) through series of experiments. For developing new shades, green mordants such as elaichi, neem, turmeric, and zeera have been utilized. It has been found that exposure of 35 mL extract of 7 pH containing 3 g/100 mL of salt as exhausting agent to U.S. rays for 30 min for the dyeing of silk at 70°C for 45 min has given maximum color strength with reddish-yellow shades. Color characteristics obtained in the CIE Lab system reveal that 5% of turmeric as meta bio-mordant has given good quality reddish-yellow shades. It is found that U.S. rays have not only good potential to isolate colorant followed by dyeing of silk under reduced condition but also the application of bio-mordants have made the process more greener, sustainable, and cleaner.
Mostrar más [+] Menos [-]Dietary supplementation with curcumin nanomicelles, curcumin, and turmeric affects growth performance and silver nanoparticle toxicity in Cyprinus carpio
2021
Pirani, Fereshteh | Moradi, Shadieh | Ashouri, Samyar | Johari, Seyed Ali | Ghaderi, Edris | Kim, Hoi Pin | Yu, Il Je
An 8-week feeding experiment was conducted to investigate the effects of curcumin nanomicelle, curcumin, and turmeric (Curcuma longa) on growth performances, body composition, fatty acid profile, and biochemical parameters of common carp (Cyprinus carpio), and their ameliorative effects against toxicity of silver nanoparticles (AgNPs). A total of 120 healthy carps were randomly distributed into four equal treatments. Curcumin nanomicelle, curcumin, and turmeric were each added separately to the basal diet. After the feeding trials, all treatments were exposed to a non-lethal concentration of AgNPs (0.5 mg L⁻¹) for 96 h. Fish fed dietary turmeric showed a significantly higher weight gain. The body protein content was significantly increased in all feeding groups, while the lipid content showed a significant decrease in the turmeric-treated group. Dietary turmeric improved the concentration of saturated fatty acids (SFA) and monounsaturated fatty acid (MUFA). AgNP exposure led to increases in liver catalase (CAT) activity of carps fed with turmeric and curcumin. The lowest amount of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was obtained in fish fed with nanomicelle curcumin and curcumin diets. The lowest amount of silver accumulation in the liver of carps was found in fish fed with dietary curcumin nanomicelle. This experiment suggests that supplementation of turmeric (50 g kg⁻¹) or curcumin (1000 mg kg⁻¹) may play an important role in enhancing growth performances and fatty acid composition of the common carp. Moreover, administration of curcumin nanomicelle in the diet may have a potential ameliorative effect against toxicity of AgNPs.
Mostrar más [+] Menos [-]Ameliorative mechanisms of turmeric-extracted curcumin on arsenic (As)-induced biochemical alterations, oxidative damage, and impaired organ functions in rats
2021
Ishaq, Anam | Gulzar, Huma | Hassan, Ali | Kāmrān, Muḥammad | Riaz, Muhammad | Parveen, Aasma | Chattha, Muhammad Sohaib | Walayat, Noman | Fatima, Sana | Afzal, Sobia | Shah, Fahad
Arsenic (As) is known for its carcinogenic and hepatorenal toxic effects causing serious health problems in human beings. Turmeric (Curcuma longa L.) extracted curcumin (Cur) is a polyphenolic antioxidant which has ability to combat hazardous environmental toxicants. This study (28 days) was carried out to investigate the therapeutic efficacy of different doses of Cur (Cur: 80, 160, 240 mg kg⁻¹) against the oxidative damage in the liver and kidney of male rats caused by sodium arsenate (Na₃AsO₄) (10 mg L⁻¹). As exposure significantly elevated the values of organ index, markers of hepatic injury (i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) and renal functions (i.e., total bilirubin, urea and creatinine, total cholesterol, total triglycerides, and lipid peroxidation malondialdehyde (MDA)). Moreover, different antioxidant markers such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in the liver and kidney tissues were reduced after As-induced toxicity. However, Na₃AsO₄ induced histopathological changes in various organs were minimized after the treatment with Cur. The alleviation effect of Cur was dosage dependent with an order of 240>160>80 mg kg⁻¹. The oral administration of Cur prominently alleviated the As-induced toxicity in liver and kidney tissues by reducing lipid peroxidation, ALT, AST, ALP, total bilirubin, urea, creatinine, total cholesterol, total triglycerides, and low-density lipoproteins (LDL). In addition, Cur being an antioxidant improved defense system by enhancing activities of SOD, CAT, GPx, and GR. Overall, the findings explain the capability of Cur to counteract the oxidative alterations as well as hepatorenal injuries due to As intoxication.
Mostrar más [+] Menos [-]Environmental-friendly extraction of Peepal (Ficus Religiosa) bark-based reddish brown tannin natural dye for silk coloration
2022
Habib, Noman | Akram, Waseem | Adeel, Shahid | Amin, Nimra | Hosseinnezhad, Mozhgan | Ehsan-ul-Haq,
The present study aims to extract a natural reddish brown colorant from Peepal (Ficus religiosa) for silk dyeing using the microwave radiation process (MW). The colorant was isolated in aqueous and acidic media, and MW treatment for 1, 2, 3, 4, and 5 min has been given to both fabric and extract to observe changes in color intensity. The dye variables have been optimized, and for sustainable shade making process with good fastness, 1.0–5.0 g/100 mL of sustainable chemical and bio-mordants has been employed. It has been found that after microwave treatment for 3 min, under selected conditions, the irradiated aqueous extract has given high color intensity onto silk fabric. The utilization of 3% of Al, 4% of Fe, and 2% of tannic acid (T.A.) as pre chemical mordant whereas 4% of Al, 4% of Fe, and 3% of tannic acid as post chemical mordant have given good color characteristics. In comparison, 4% of acacia and 3% of turmeric and pomegranate while 3% of acacia and turmeric and 4% of pomegranate extracts as post-bio-mordant have given excellent color characteristics. It is concluded that MW treatment has an excellent sustainable efficacy to isolate colorant from Peepal bark for silk dyeing, whereas the inclusion of bio-mordants has not only made the process more sustainable and environmental friendly but also best K/S, and L*a*b* values have been acquired.
Mostrar más [+] Menos [-]Multiple health benefits of curcumin and its therapeutic potential
2022
Shah, Muddaser | Murad, Waheed | Mubin, Sidra | Ullah, Obaid | Rehman, Najeeb Ur | Md. Habibur Rahman,
Turmeric, or Curcuma longa as it is formally named, is a multifunctional plant with numerous names. It was dubbed “the golden spice” and “Indian saffron” not only for its magnificent yellow color, but also for its culinary use. Turmeric has been utilized in traditional medicine since the dawn of mankind. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which are all curcuminoids, make up turmeric. Although there have been significant advancements in cancer treatment, cancer death and incidence rates remain high. As a result, there is an increasing interest in discovering more effective and less hazardous cancer treatments. Curcumin is being researched for its anti-inflammatory, anti-cancer, anti-metabolic syndrome, neuroprotective, and antibacterial properties. Turmeric has long been used as a home remedy for coughs, sore throats, and other respiratory problems. As a result, turmeric and its compounds have the potential to be used in modern medicine to cure a variety of diseases. In this current review, we highlighted therapeutic potential of curcumin and its multiple health benefits on various diseases.
Mostrar más [+] Menos [-]Biochar compound fertilisers increase plant potassium uptake 2 years after application without additional organic fertiliser
2022
Farrar, Michael B. | Wallace, Helen M. | Xu, Cheng-Yuan | Joseph, Stephen | Nguyen, Thi Thu Nhan | Dunn, Peter K. | Bai, Shahla Hosseini
Biochar compound fertilisers (BCFs) are an emerging technology that combine biochar with nutrients, clays and minerals and can be formulated to address specific issues in soil-plant systems. However, knowledge of BCF performance over consecutive crops and without re-application is limited. This study aims to assess the residual effect of organic BCFs soil-plant nutrient cycling 2 years after application and without additional fertiliser inputs. We applied BCFs and biochar with organic fertiliser amendments and established a crop of ginger and a second crop of turmeric (Curcuma longa) without re-application or additional fertilisation. All treatment formulations included bamboo-biochar and organic fertiliser amendments; however, two novel BCFs were formulated to promote agronomic response in an intensive cropping system. We report here on the effect of treatments on soil and plant macronutrient and micronutrient cycling and turmeric growth, biomass and yield at harvest. Both BCFs (enriched (10 t ha⁻¹) and organo-mineral biochar (8.6 t ha⁻¹) increased foliar K (+155% and +120%) and decreased foliar Mg (−20% and −19%) concentration compared with all other treatments, suggesting antagonism between K and Mg. Plants were limited for K, P and B at harvest but not N, Ca or Mg. Foliar K was dependent on the biochar formulation rather than the rate of application. Biochar-clay aggregates increased K retention and cycling in the soil solution 2 years after application. Clay blended BCFs reduced K limitation in turmeric compared to biochar co-applied with organic amendments, suggesting these blends can be used to manage organic K nutrition. All formulations and rates of biochar increased leaf biomass and shoot-to-root ratio. Novel BCFs should be considered as an alternative to co-applying biochar with organic fertiliser amendments to decrease application rates and increase economic feasibility for farmers. Applying BCFs without re-application or supplementary fertiliser did not provide sufficient K or P reserves in the second year for consecutive cropping. Therefore, supplementary fertilisation is recommended to avoid nutrient deficiency and reduced yield for consecutive organic rhizome crops.
Mostrar más [+] Menos [-]Performance analysis of a solar dryer integrated with thermal energy storage using PCM-Al2O3 nanofluids
2022
Subramaniam, Babu Sasi Kumar | Sugumaran, Arun Kumar | Athikesavan, Muthu Manokar
Solar energy will assist in lowering the price of fossil fuels. The current research is based on a study of a solar dryer with thermal storage that uses water and waste engine oil as the working medium at flow rates of 0.035, 0.045, and 0.065 l/s. A parabolic trough collector was used to collect heat, which was then stored in a thermal energy storage device. The system consisted of rectangular boxes containing stearic acid phase change materials with 0.3vol % Al₂O₃ nanofluids, which stored heat for the waste engine oil medium is 0.33 times that of the water medium at a rate of flow of 0.035 l/s which was also higher than the flow rates of 0.045 and 0.065 l/s. The parabolic trough reflected solar radiation to the receiver, and the heat was collected in the storage medium before being forced into circulation and transferred to the solar dryer. At a flow rate of 0.035 l/s, the energy output of the solar dryer’s waste engine oil medium and water was determined to be roughly 12.4, 14, and 15.1, and 9.8, 10.5, and 11.5 times lower than the crops output of groundnut, ginger, and turmeric, respectively. The energy output in the storage tank and the drying of groundnut, ginger, and turmeric crops with water and waste engine oil medium at varied flow rates of 0.035, 0.045, and 0.065 l/s were studied. Finally, depending on the findings of the tests, this research could be useful in agriculture, notably in the drying of vegetables.
Mostrar más [+] Menos [-]