Refinar búsqueda
Resultados 1-10 de 70
Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant Texto completo
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Mostrar más [+] Menos [-]Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings Texto completo
2020
Weng, Yineng | You, Yue | Lu, Qi | Zhong, Ao | Liu, Siyi | Liu, Huijun | Du, Shaoting
Despite the large number of studies reporting the phytotoxicity of graphene-based materials, the effects of these materials on nutrient uptake in plants remain unclear. The present study showed that nitrate concentrations were significantly decreased in the roots of wheat plants treated with graphene oxide (GO) at 200–800 mg L⁻¹. Non-invasive microelectrode measurement demonstrated that GO could significantly inhibit the net NO₃⁻ influx in the meristematic, elongation, and mature zones of wheat roots. Further analysis indicated that GO could be trapped in the root vacuoles, and that the maximal root length and the number of lateral roots were significantly reduced. Additionally, root tip whitening, creases, oxidative stress, and weakened respiration were observed. These observations indicate that GO is highly unfavorable for vigorous root growth and inhibits increase in root uptake area. At the molecular level, GO exposure caused DNA damage and inhibited the expression of most nitrate transporters (NRTs) in wheat roots, with the most significantly downregulated genes being NRT1.3, NRT1.5, NRT2.1, NRT2.3, and NRT2.4. We concluded that GO exposure decreased the root uptake area and root activity, and decreased the expression of NRTs, which may have consequently suppressed the NO₃⁻ uptake rate, leading to adverse nitrate accumulation in stressed plants.
Mostrar más [+] Menos [-]Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure Texto completo
2019
Fan, Huiyang | Jin, Mingkang | Wang, Huan | Xu, Qianru | Xu, Lei | Wang, Chenxuanzi | Du, Shaoting | Liu, Huijun
Concerns have been raised regarding the ecotoxicity of ionic liquids (ILs) owing to their wide usage in numerous fields. Three imidazolium chloride ILs with different numbers of methyl substituents, 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were examined to assess their effects on growth, photosynthesis pigments content, chlorophyll fluorescence, photosynthetic and respiration rate, and cellular ultrastructure of Scenedesmus obliquus. The results showed that algal growth was significantly inhibited by ILs treatments. The observed IC50,48h doses were 0.10 mg/L [C10IM]Cl, 0.01 mg/L [C10MIM]Cl, and 0.02 mg/L [C10DMIM]Cl. The chlorophyll a, chlorophyll b, and total chlorophyll content declined, and the chlorophyll fluorescence parameters, minimal fluorescence yield (F0), maximal fluorescence yield (Fm), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII [Y(II)], non-photochemical quenching (NPQ) and non-photosynthetic losses yield [Y(NO)] were notably affected by ILs in a dose-dependent manner. ILs affected the primary photosynthetic reaction, impaired heat dissipation capability, and diminished photosynthetic efficiency, indicating negative effects on photosystem II. The photosynthetic and respiration rates of algal cells were also reduced due to the ILs treatments. The adverse effects of ILs on plasmolysis and chloroplast deformation were examined using ultrastructural analyses; chloroplast swelling and lamellar structure almost disappeared after the [C10MIM]Cl treatment, and an increased number of starch grains and vacuoles was observed after all ILs treatments. The results indicated that one-methyl-substituted ILs were more toxic than non-methyl-substituted ILs, which were also more toxic than di-methyl-substituted ILs. The toxicity of the examined ILs showed the following order: [C10IM]Cl < [C10DMIM]Cl ≤ [C10MIM]Cl.
Mostrar más [+] Menos [-]Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms Texto completo
2018
Wilkinson, John L. | Hooda, Peter S. | Swinden, Julian | Barker, James | Barton, Stephen
Organic contaminants such as pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) are known to persist in the aquatic environment and many are indicated as endocrine, epigenetic, or other toxicants. Typically, the study of PPCPs/ECs in the aquatic environment is limited to their occurrence dissolved in river water. In this study, accumulation and spatial distribution of thirteen PPCPs/ECs were assessed in aquatic sediment (n = 23), periphyton (biofilm, n = 8), plants Callitriche sp. (n = 8) and Potamogeton sp. (n = 7) as well as amphipod crustaceans (Gammarus pulex, n = 10) and aquatic snails (Bithynia tentaculata, n = 9). All samples (n = 65) were collected from the Hogsmill, Blackwater and Bourne Rivers in southern England. Targeted PPCPs/ECs included pharmaceuticals, plasticisers, perfluorinated compounds, illicit drugs and metabolites. Extraction from solid matrices occurred using ultrasonic-assisted extraction followed by an in-house validated method for solid-phase extraction and subsequent liquid-chromatography tandem mass-spectrometry. Field-derived bioconcentration-factors and biota-sediment accumulation-factors were determined for all studied biota. Residues of studied contaminants were found in all sediment and biota. Concentrations of contaminants were generally higher in biota than sediment. Evidence suggests that the studied aquatic plants may effectively degrade bisphenol-A into its main transformation product hydroxyacetophenone, potentially mediated by cytochrome p450 and internalisation of contaminants into the cellular vacuole. A positive association between both hydrophobicity and PFC chain length and contaminant accumulation was observed in this work. Only PFCs, plasticisers and HAP were classified as either ‘bioaccumulative’ or ‘very bioaccumulative’ using BCF criteria established by guidelines of four governments. Contaminants appeared to be differentially bioaccumulative in biota, indicating there may be a need for a species-specific BCF/BSAF classification system. These data form a detailed accounting of PPCP/EC fate and distribution in the aquatic environment highlighting accumulation at lower trophic levels, a potential source for higher organisms.
Mostrar más [+] Menos [-]Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR Texto completo
2017
Zhao, Yanyan | Cao, Qing | He, Yaojia | Xue, Qingju | Xie, Liqiang | Yan, Yunjun
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases.
Mostrar más [+] Menos [-]Ultrastructural changes and Heat Shock Proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales – Bryophyta) Texto completo
2013
Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days.At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens.When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition.These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum.
Mostrar más [+] Menos [-]Elevated pH-mediated mitigation of aluminum-toxicity in sweet orange (Citrus sinensis) roots involved the regulation of energy-rich compounds and phytohormones Texto completo
2022
Wu, Bi-Sha | Lai, Yin-Hua | Peng, Ming-Yi | Ren, Qian-Qian | Lai, Ning-Wei | Wu, Jincheng | Huang, Zeng-Rong | Yang, Lin-Tong | Chen, Li-Song
For the first time, we used targeted metabolome to investigate the effects of pH-aluminum (Al) interactions on energy-rich compounds and their metabolites (ECMs) and phytohormones in sweet orange (Citrus sinensis) roots. The concentration of total ECMs (TECMs) was reduced by Al-toxicity in 4.0-treated roots, but unaffected significantly in pH 3.0-treated roots. However, the concentrations of most ECMs and TECMs were not lower in pH 4.0 + 1.0 mM Al-treated roots (P4AR) than in pH 3.0 + 1.0 mM Al-treated roots (P3AR). Increased pH improved the adaptability of ECMs to Al-toxicity in roots. For example, increased pH improved the utilization efficiency of ECMs and the conversion of organic phosphorus (P) from P-containing ECMs into available phosphate in Al-treated roots. We identified upregulated cytokinins (CKs), downregulated jasmonic acid (JA), methyl jasmonate (MEJA) and jasmonates (JAs), and unaltered indole-3-acetic acid (IAA) and salicylic acid (SA) in P3AR vs pH 3.0 + 0 mM Al-treated roots (P3R); upregulated JA, JAs and IAA, downregulated total CKs, and unaltered MEJA and SA in P4AR vs pH 4.0 + 0 mM Al-treated roots (P4R); and upregulated CKs, downregulated JA, MEJA, JAs and SA, and unaltered IAA in P3AR vs P4AR. Generally viewed, raised pH-mediated increments of JA, MEJA, total JAs, SA and IAA concentrations and reduction of CKs concentration in Al-treated roots might help to maintain nutrient homeostasis, increase Al-toxicity-induced exudation of organic acid anions and the compartmentation of Al in vacuole, and reduce oxidative stress and Al uptake, thereby conferring root Al-tolerance. In short, elevated pH-mediated mitigation of root Al-stress involved the regulation of ECMs and phytohormones.
Mostrar más [+] Menos [-]Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species Texto completo
2021
Shi, Wenguang | Zhou, Jing | Li, Jing | Ma, Chaofeng | Zhang, Yuhong | Deng, Shurong | Yu, Wenjian | Luo, Zhi-Bin
To explore whether lead (Pb)-induced defense responses are responsible for the low root-to-shoot Pb translocation, we exposed saplings of the two contrasting poplar species, Populus × canescens with relatively high root-to-shoot Pb translocation and P. nigra with low Pb translocation, to 0 or 8 mM PbCl₂. Pb translocation from the roots to aboveground tissues was lower by 57% in P. nigra than that in P. × canescens. Lower Pb concentrations in the roots and aerial tissues, greater root biomass, and lower ROS overproduction in the roots were found in P. nigra than those in P. × canescens treated with Pb. P. nigra roots had higher proportions of cell walls (CWs)-bound Pb and water insoluble Pb compounds, and higher transcript levels of some pivotal genes related to Pb vacuolar sequestration, such as phytochelatin synthetase 1.1 (PCS1.1), ATP-binding cassette transporter C1.1 (ABCC1.1) and ABCC3.1 than P. × canescens roots. Pb exposure induced defense responses including increases in the contents of pectin and hemicellulose, and elevated oxalic acid accumulation, and the transcriptional upregulation of PCS1.1, ABCC1.1 and ABCC3.1 in the roots of P. nigra and P. × canescens. These results suggest that the stronger defense barriers in P. nigra roots are probably associated with the lower Pb translocation from the roots to aerial tissues, and that Pb exposure-induced defense responses can enhance the barriers against Pb translocation in poplar roots.
Mostrar más [+] Menos [-]The emerging contaminant 3,3′-dichlorobiphenyl (PCB-11) impedes Ahr activation and Cyp1a activity to modify embryotoxicity of Ahr ligands in the zebrafish embryo model (Danio rerio) Texto completo
2019
Roy, Monika A. | Sant, Karilyn E. | Venezia, Olivia L. | Shipman, Alix B. | McCormick, Stephen D. | Saktrakulkla, Panithi | Hornbuckle, Keri C. | Timme-Laragy, Alicia R.
3,3′-dichlorobiphenyl (PCB-11) is an emerging PCB congener widely detected in environmental samples and human serum, but its toxicity potential is poorly understood. We assessed the effects of three concentrations of PCB-11 on embryotoxicity and Aryl hydrocarbon receptor (Ahr) pathway interactions in zebrafish embryos (Danio rerio). Wildtype AB or transgenic Tg(gut:GFP) strain zebrafish embryos were exposed to static concentrations of PCB-11 (0, 0.2, 2, or 20 μM) from 24 to 96 h post fertilization (hpf), and gross morphology, Cytochrome P4501a (Cyp1a) activity, and liver development were assessed via microscopy. Ahr interactions were probed via co-exposures with PCB-126 or beta-naphthoflavone (BNF). Embryos exposed to 20 μM PCB-11 were also collected for PCB-11 body burden, qRT-PCR, RNAseq, and histology. Zebrafish exposed to 20 μM PCB-11 absorbed 0.18% PCB-11 per embryo at 28 hpf and 0.61% by 96 hpf, and their media retained 1.36% PCB-11 at 28 hpf and 0.84% at 96 hpf. This concentration did not affect gross morphology, but altered the transcription of xenobiotic metabolism and liver development genes, impeded liver development, and increased hepatocyte vacuole formation. In co-exposures, 20 μM PCB-11 prevented deformities caused by PCB-126 but exacerbated deformities in co-exposures with BNF. This study suggests that PCB-11 can affect liver development, act as a partial agonist/antagonist of the Ahr pathway, and act as an antagonist of Cyp1a activity to modify the toxicity of compounds that interact with the Ahr pathway.
Mostrar más [+] Menos [-]Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration Texto completo
2018
Cao, Zhen-Zhen | Qin, Mei-Ling | Lin, Xiao-Yan | Zhu, Zhi-Wei | Chen, Ming-Xue
Sulfur (S) fertilizer application in rice (Oryza sativa L.) is crucial in determining rice grain productivity and quality. However, little information is available concerning the effect of S supply on cadmium (Cd) uptake and translocation in rice. In this study, both hydroponic and soil experiments were conducted to investigate the influence of S supply on Cd accumulation in rice under two Cd levels (0 and 50 μM), combined with three S concentrations (0, 2.64 and 5.28 mM). The moderate and excessive S supply (2.64 and 5.28 mM) tended to increase plant growth, root length, root and shoot dry weights of rice seedlings, and significantly decreased Cd concentrations in rice plants and grains in the absence or presence of Cd. The subcellular distribution and chemical forms of Cd in roots and shoots also varied with S supply levels. The decreased Cd uptake and translocation in rice grains could be ascribed to the enhanced formation of iron (Fe) plaque on the root surfaces and increased Cd chelation and vacuolar sequestration in roots, since Fe, Mn concentrations in Fe plaque, glutathione and phytochelatins contents, as well as phytochelatin synthase (OsPCS) and tonoplast heavy metal ATPase (OsHMA3) expressions in roots significantly increased with increased S supply. This work provides more insight into the mechanisms of Cd uptake and translocation in rice, and will be helpful for developing strategies to reduce rice grain Cd through S fertilizer application in Cd-contaminated soil.
Mostrar más [+] Menos [-]