Refinar búsqueda
Resultados 1-10 de 25
Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors
2019
Osterwalder, Stefan | Huang, Jen-How | Shetaya, Waleed H. | Agnan, Yannick | Frossard, Aline | Frey, Beat | Alewell, Christine | Kretzschmar, Ruben | Biester, Harald | Obrist, Daniel
The Minamata Convention entered into force in 2017 with the aim to phase-out the use of mercury (Hg) in manufacturing processes such as the chlor-alkali or vinyl chloride monomer production. However, past industrial use of Hg had already resulted in extensive soil pollution, which poses a potential environmental threat. We investigated the emission of gaseous elemental mercury (Hg0) from Hg polluted soils in settlement areas in the canton of Valais, Switzerland, and its impact on local air Hg concentrations. Most soil Hg was found as soil matrix-bound divalent Hg (HgII). Elemental mercury (Hg0) was undetectable in soils, yet we observed substantial Hg0 emission (20–1392 ng m−2 h−1) from 27 soil plots contaminated with Hg (0.2–390 mg Hg kg−1). The emissions of Hg0 were calculated for 1274 parcels covering an area of 8.6 km2 of which 12% exceeded the Swiss soil remediation threshold of 2 mg Hg kg−1. The annual Hg0 emission from this area was approximately 6 kg a−1, which is almost 1% of the total atmospheric Hg emissions in Switzerland based on emission inventory estimates. Our results show a higher abundance of Hg resistance genes (merA) in soil microbial communities with increasing soil Hg concentrations, indicating that biotic reduction of HgII is likely an important pathway to form volatile Hg0 in these soils. The total soil Hg pool in the top 20 cm of the investigated area was 4288 kg; hence, if not remediated, these contaminated soils remain a long-term source of atmospheric Hg, which is prone to long-range atmospheric transport.
Mostrar más [+] Menos [-]A multi-path chain kinetic reaction model to predict the evolution of 1,1,1-trichloroethane and its daughter products contaminant-plume in permeable reactive bio-barriers
2019
Wang, Wenbing | Wu Yanqing,
Permeable reactive bio-barriers (Bio-PRBs) are a new and developing technique for in situ remediation of groundwater contamination. Some remediation technologies have often been impeded by insufficient understanding of contaminant transport and transformation in the subsurface environment. Therefore, advanced knowledge in contaminant transport and reactions in Bio-PRBs will be crucial to the successful practical application of this technique. A two-dimensional reaction model C1 was developed for predicting the multi-path chain kinetic reaction of 1,1,1-trichloroethane (1,1,1-TCA) in Bio-PRBs. This study demonstrates that model C1 is able to predict the 1,1,1-TCA breakthrough time and rapidly evaluate the Bio-PRBs retardation performance. The results show that microbial growth and immobilization are the key factors that affect the retardation and remediation performance of Bio-PRBs. The free growth of microorganisms had significant negative effects on hydraulic conductivity (K) in the zero-valent iron (ZVI) region of free microorganism Bio-PRBs (FM-PRBs). The total head loss in the FM-PRB was 9.0 cm, which was significantly greater than the head loss (6.5 cm) of immobilized microorganism Bio-PRBs (IM-PRBs). Compared to ZVI-PRBs and FM-PRBs, the numerical simulation results reveal that microbial immobilization significantly improves the remediation performance of IM-PRBs by 550.9% and 32.7%, respectively. The dual effect of microorganisms leads to significant differences in the 1,1,1-TCA and daughter products (1,1-dichloroethane, 1,1-dichloroethene, chloroethane and vinyl chloride) contaminant-plume evolution between FM-PRBs and IM-PRBs. In addition, model C1 can be utilized to design standard Bio-PRBs for real site of 1,1,1-TCA contanminated groundwater. To meet the safety standard of groundwater as potable water, the width of IM-PRBs needs to be increased by 24 cm. However, in FM-PRBs, the width needs to be increased by 42 cm. Therefore, IM-PRBs save costs significantly. This work has successfully used a model to optimize Bio-PRBs and to predict 1,1,1-TCA and daughter products contaminant-plume evolution in different Bio-PRBs.
Mostrar más [+] Menos [-]Association between urinary thiodiglycolic acid level and hepatic function or fibrosis index in school-aged children living near a petrochemical complex
2019
Wang, Zhiwen | Liao, Kai-Wei | Chan, Chang-Chuan | Yu, Ming-Lung | Chuang, Hung-Yi | Chiang, Hung-Che | Huang, Po-Chin
The effect of exposure to vinyl chloride monomer (VCM) on susceptibility to hepatotoxicity in children is unknown, although experimental studies have demonstrated a significantly increased risk of hepatocellular carcinoma in rodents exposed to VCM in early life. Epidemiological studies have revealed a high prevalence of liver fibrosis and abnormal liver function in workers exposed to high VCM levels. We aimed to assess the association among urinary thiodiglycolic acid (TDGA) level, abnormal liver function, and hepatic fibrosis in school-aged children living near a petrochemical complex. A total of 303 school-aged (6–13 years) children within 10 km nearly a petrochemical complex was recruited in central Taiwan. First-morning urine and blood samples were collected from each subject, and urinary TDGA level was analyzed through liquid chromatography–tandem mass spectrometry. Liver function was determined by serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Hepatic fibrosis was assessed using the AST to platelet ratio index (APRI) and fibrosis-4 score (FIB-4). Risk of hepatotoxicity induced by TDGA exposure was estimated using multivariate logistic regression. The median (range, subclinically abnormal %) AST and ALT levels of all subjects were 26.0 (17.0–99.0, 25.7%) and 15.0 (7.0–211.0, 5.9%) IU/L, respectively. Children in the highest urinary TDGA quartile (≥160.0 μg/g creatinine) exhibited significantly elevated median AST levels compared with those in the lowest quartiles (<35.4 μg/g creatinine, p = 0.033). After adjustment for potential confounding factors, children in the highest quartiles (Q₄) of TDGA level had significantly increased odds ratio (OR) of subclinically abnormal AST (OR = 3.86; 95% confidence interval: 1.54–9.67) compared with those in the lowest quartile. A dose-response trend (p = 0.004) was observed. Our findings support the hypothesis that elevated urinary TDGA level in children living near petrochemical complex is associated with susceptibility to hepatotoxicity.
Mostrar más [+] Menos [-]Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies
2015
Wang, S.Y. | Kuo, Y.C. | Huang, Y.Z. | Huang, C.W. | Kao, C.M.
In this study, the effectiveness of bioremediating 1,2-dichloroethane (DCA)-contaminated groundwater under different oxidation–reduction processes was evaluated. Microcosms were constructed using indigenous bacteria and activated sludge as the inocula and cane molasses and a slow polycolloid-releasing substrate (SPRS) as the primary substrates. Complete DCA removal was obtained within 30 days under aerobic and reductive dechlorinating conditions. In anaerobic microcosms with sludge and substrate addition, chloroethane, vinyl chloride, and ethene were produced. The microbial communities and DCA-degrading bacteria in microcosms were characterized by 16S rRNA-based denatured-gradient-gel electrophoresis profiling and nucleotide sequence analyses. Real-time polymerase chain reaction was applied to evaluate the variations in Dehalococcoides spp. and Desulfitobacterium spp. Increase in Desulfitobacterium spp. indicates that the growth of Desulfitobacterium might be induced by DCA. Results indicate that DCA could be used as the primary substrate under aerobic conditions. The increased ethene concentrations imply that dihaloelimination was the dominate mechanism for DCA biodegradation.
Mostrar más [+] Menos [-]Development of a passive sampler for Zinc(II) in urban pond waters using a polymer inclusion membrane
2014
Almeida, M. Inês G.S. | Chan, Cleopas | Pettigrove, Vincent J. | Cattrall, Robert W. | Kolev, Spas D.
The use of a polymer inclusion membrane (PIM) in a novel passive sampler to measure the time-weighted average concentration of Zn(II) in urban waters is described. The passive sampler consists of a compartment containing an acidic receiving solution, which is separated from the external source solution by a PIM consisting of 40 wt% di-2-(ethylhexyl) phosphoric acid as the extractant, and 60 wt% poly-(vinyl chloride) as the base polymer. Two laboratory passive sampling techniques were tested. One involved immersion of the passive sampler into a source solution (“dip-in” approach) for a predetermined period of time while in the other one the source solution was flown past the membrane of the sampler (“flow-through” approach). The latter approach was found to be more suitable for the calibration of the passive sampler under laboratory conditions. A successful application using the “dip-in” sampling approach in urban waters has been conducted for proof of concept.
Mostrar más [+] Menos [-]The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till
2014
Bælum, Jacob | Scheutz, Charlotte | Chambon, Julie C. | Jensen, Christine Mosegaard | Brochmann, Rikke P. | Dennis, Philip | Laier, Troels | Broholm, Mette M. | Bjerg, Poul L. | Binning, Philip J. | Jacobsen, Carsten S.
A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator abundance increased to the same level in all treatments. In the non-bioaugmented microcosms the reductive dehalogenase gene bvcA increased in abundance, but when KB-1 was added the related vcrA gene increased while bvcA genes did not increase. Modeling showed higher vinyl-chloride dechlorination rates and shorter time for complete dechlorination to ethene with higher initial concentration of KB-1 culture, while cis-dichloroethene dechlorination rates were not affected by KB-1 concentrations. This study provides high resolution abundance profiles of Dehalococcoides spp. (DHC) and functional genes, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination.
Mostrar más [+] Menos [-]Potential Microbial Indicators for Better Bioremediation of an Aquifer Contaminated with Vinyl Chloride or 1,1-Dichloroethene
2020
Chen, Tzu-Wen | Chang, Shu-Chi
Trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) are notorious pollutants in groundwater. The biodegradation of them yields more toxic vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE). Although their biodegradation is highly feasible in the lab, field remediation still faces huge challenges. One challenge of them is the lack of good microbial indicators and consequently, monitoring famous species can cause the prediction of project time span and related expenses to fail. Here, in this study, we offer a solution by integrating predominance, correlation, and principal component analysis on the testing results of the biodegradation of VC and 1,1-DCE under seven different nutrient-amendment conditions. The inoculum was from a contaminated site with accumulated 1,1-DCE and VC. Next-generation sequencing (NGS) was applied to 15 microbial communities. Traditional analysis relying predominance on NGS data may be misleading due to the variation of copy number per cell for different microorganisms. By considering predominance, correlation between copy number and removal efficiency, and PCA loading factors of the principle component analysis, bacteria of the Ruminococcaceae family, Syntrophomonas sp., Pseudomonas stutzuri, Candidatus Methanoregula, and Methanospirillum sp. could be microbial indicators for removing 1,1-DCE and VC in biodegradation. The results suggested a variety of combinations of bacteria and archaeal species can effectively remove 1,1-DCE but less so for VC. The influence of archaeal species in the natural environment on bioremediation of chlorinated solvents cannot be neglected.
Mostrar más [+] Menos [-]Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane
2017
Yoshikawa, Miho | Zhang, Ming | Toyota, Koki
Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis-DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.
Mostrar más [+] Menos [-]Microbiome Reengineering by Heat Selection for Rapid Biodegradation of Trichloroethylene with Minimal Vinyl Chloride Formation
2021
Chan, Ai-Lin | Tseng, Chien-Yun | Chen, Tzu-Wen | Lo, Yi-Hsuan | Chang, Shu-Chi
Trichloroethylene (TCE) was a widely used industrial solvent but is now regarded as a notorious groundwater contaminant. Both physicochemical and biological methods have been applied to remediate groundwater contaminated by TCE. For medium to low level of TCE contamination, bioremediation could be more cost-effective. However, bioremediation approaches suffer from slow degradation rates and accumulation of vinyl chloride (VC). In addition, bioaugmentation is often highly encouraged but may introduce foreign genes and increase the pace of microbial evolution. In this study, a microbiome reengineering strategy by heat selection is applied to solve these problems. Out of eight heat-treated mixed cultures, two showed a much-improved TCE degradation rate, more than 70 times higher than the untreated. The biodegradation half-life (t₁/₂) of TCE was 0.0627 d or shorter. No VC was detected by a gas chromatography equipped with flame ionization detector (GC-FID) and only a minimal amount by a GC-mass spectrometer (GC-MS). Ethene achieved a fairly good mass balance. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and next-generation sequencing (NGS) results showed that the heating process did not kill most bacteria, but Dehalococcoides were either not present or very scarce. Acetoanaerobium and Methanosarcina could be the most important species in this reductive dechlorination process. Kinetic study results showed that the maximum specific TCE degradation rate was approximately 1,271 nmole/min/mg cell protein, which are two orders of magnitude higher than that of the mixed cultures reported in literature. These results suggest that apart from biostimulation and bioaugmentation, microbiome reengineering could be a promising approach for rapid bioremediation of TCE-contaminated aquifers.
Mostrar más [+] Menos [-]Fate and contaminant transport model-driven probabilistic human health risk assessment of DNAPL-contaminated site
2021
Guleria, Abhay | Chakma, Sumedha
In this study, fate and contaminant transport model-driven human health risk indexes were calculated due to the presence of dense non-aqueous phase liquids (DNAPLs) in the subsurface environment of air force base area in Florida, USA. Source concentration data of DNAPLs was used for the calculation of transport model-driven health risk indexes for the children and adult sub-population via direct oral ingestion and skin dermal contact exposure scenario using 10,000 Monte Carlo type simulations. The highest variation in the probability distribution of transformed DNAPL compound (cis-dichloroethene (cis-DCE) > vinyl chloride (VC)) was observed as compared to parent DNAPL (tetrachloroethene (PCE)) based on the 50-year simulation timespan. Transformed DNAPL compounds (VC, cis-DCE) posed the highest risk to human health for a longer duration (up to 15 years) in comparison to parent DNAPL (PCE), as non-carcinogenic hazard quotient varied from 400 to 1100. Carcinogenic health risks were observed as 3-order of magnitude higher than safe limit (HQSₐfₑ < 10⁻⁶) from 2nd to 5th year timespan and fall in the high-risk zone, indicating the need for a remediation plan for a contaminated site. Variance attribution analysis revealed that concentration, body weight, and exposure duration (contribution percentage – 70 to 95%) were the most important parameters, highlighting the impact of dispersivity and exposure model in the estimation of risk indexes. This approach can help decision-makers when a contaminated site with partial data on hydrogeological properties and with higher uncertainty in model parameters is to be assessed for the formulation of remediation measures.
Mostrar más [+] Menos [-]