Refinar búsqueda
Resultados 1-10 de 53
Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms Texto completo
2022
Zhang, Zhenyan | Wang, Yan | Chen, Bingfeng | Lei, Chaotang | Yu, Yitian | Xu, Nuohan | Zhang, Qi | Wang, Tingzhang | Gao, Wenwen | Lu, Tao | Gillings, Michael | Qian, Haifeng
Antibiotic resistance genes (ARGs) and virulence factors (VFs) are critical threats to human health. Their abundance in aquatic ecosystems is maintained and enhanced via selection driven by environmental xenobiotics. However, their activity and expression in these environments under xenobiotic stress remains unknown. Here ARG and VF expression profiles were examined in aquatic microcosms under ciprofloxacin, glyphosate and sertraline hydrochloride treatment. Ciprofloxacin increased total expression of ARGs, particularly multidrug resistance genes. Total expression of ARGs and VFs decreased significantly under glyphosate and sertraline treatments. However, in opportunistic human pathogens, these agents increased expression of both ARGs and VFs. Xenobiotic pollutants, such as the compounds we tested here, have the potential to disrupt microbial ecology, promote resistance, and increase risk to human health. This study systematically evaluated the effects of environmental xenobiotics on transcription of ARGs and VFs, both of which have direct relevance to human health. Transcription of such genes has been overlooked in previous studies.
Mostrar más [+] Menos [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review Texto completo
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
Mostrar más [+] Menos [-]Is obesity the missing link between COVID-19 severity and air pollution? Texto completo
2020
Lubrano, Carla | Risi, Renata | Masi, Davide | Gnessi, Lucio | Colao, Annamaria
In the previous publication “Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?” Conticini et al. hypothesized that the surplus of lethality of the novel SARS-CoV-2 in Northern Italy may be at least in part explained by the evidence of highest pollution reported in this area, as both severe COVID-19 and smog exposure are correlated to an innate immune system hyper-activation with subsequent lung inflammation and injury. Since this hypothesis alone does not fully explain why specific subgroups of patients are at major risk, we hypothesized that obesity may be one of the links between COVID-19 severity and high level of air pollution. First, obesity is a predisposing factor for SARS-Cov-2 infection and worse COVID-19 outcomes, and unequivocal evidence demonstrated that fat mass excess is independently associated with several pulmonary diseases and lung inflammation. Moreover, it has been shown that obesity may intensify the detrimental effects of air pollution on the lungs, and this is not surprising if we consider that these conditions share an excessive activation of the immune system and a lung inflammatory infiltrate. Finally, fat mass excess has also been speculated to be itself a consequence of air pollutants exposure, which has been proved to induce metabolic disruption and weight gain in murine models. In conclusion, although many variables must be taken into account in the analysis of the pandemic, our observations suggest that obesity may act as effect modifier of smog-induced lung-injury, and the concomitant presence of these two factors could better explain the higher virulence, faster spread and greater mortality of SARS-CoV-2 in Northern Italy compared to the rest of the country.
Mostrar más [+] Menos [-]Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics Texto completo
2022
Kim, HeeSoo | Kim, Mincheol | Kim, Sanghee | Lee, Yung Mi | Shin, Seung Chul
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Mostrar más [+] Menos [-]Per- and polyfluoroalkyl substances enhance Staphylococcus aureus pathogenicity and impair host immune response Texto completo
2022
Chandra Kumar Mangu, Jagadish | Stylianou, Marios | Olsson, Per-Erik | Jass, Jana
Per- and Poly-fluoroalkyl substances (PFAS) are one of the major persistent environmental contaminants. Epidemiological studies have linked PFAS exposures to altered immunity and increased occurrence of infections in children. However, the mechanisms leading to immune susceptibility to bacterial infections remains unclear. To elucidate the mechanism, transcriptional alteration in the Caenorhabditis elegans model caused by a PFAS contaminated environmental water and two reconstituted PFAS solutions were evaluated using RNA-sequencing. PFAS affected the expression of several genes involved in C. elegans immune surveillance to Gram-positive bacteria (cpr-2, tag-38, spp-1, spp-5, clec-7, clec-172). The combined exposure to PFAS and Staphylococcus aureus significantly reduced C. elegans survival and increased intestinal membrane permeability. Furthermore, the growth of S. aureus in the presence of PFAS increased the expression of virulence genes, specifically, the virulence gene regulator saeR and α-hemolysin, hla, which resulted in increased hemolytic activity. The present study demonstrated that PFAS exposure not only increased C. elegans susceptibility to pathogens by reducing host immunity and increasing intestinal membrane permeability, but also increased bacteria virulence. This presents a broader implication for humans and other animals, where environmental contaminants simultaneously reduce host resilience, while, increasing microbial pathogenicity.
Mostrar más [+] Menos [-]Occurrence and distribution of antimicrobial resistance genes in the soil of an industrial park in China: A metagenomics survey Texto completo
2021
Zheng, Beiwen | Liu, Wenhong | Xu, Hao | Li, Junfeng | Jiang, Xiawei
As zoned areas of industries, industrial parks have great impacts on the environment. Several studies have demonstrated that chemical compounds and heavy metals released from industrial parks can contaminate soil, water, and air. However, as an emerging pollutant, antimicrobial resistance genes (ARGs) in industrial parks have not yet been investigated. Here, we collected soil samples from 35 sites in an industrial park in China and applied a metagenomics strategy to profile the ARGs and virulence factors (VFs). We further compared the relative abundance of ARGs between the sites (TZ_31–35) located in a beta-lactam antimicrobial-producing factory and other sites (TZ_1–30) in this industrial park. Metagenomic sequencing and assembly generated 14, 383, 065 contigs and 17, 631, 051 open reading frames (ORFs). Taxonomy annotation revealed Proteobacteria and Actinobacteria as the most abundant phylum and class, respectively. The 32 pathogenic bacterial genera listed in the virulence factor database (VFDB) were all identified from the soil metagenomes in this industrial park. In total, 685,354 ARGs (3.89% of the ORFs) and 272,694 virulence factors (VFs) (1.55% of the ORFs) were annotated. These ARGs exhibited resistance to several critically important antimicrobials, such as rifampins, fluroquinolones, and beta-lactams. In addition, no significant difference in the relative abundance of ARGs was observed between sites TZ_31–35 and TZ_1–30, indicating that ARGs have already disseminated widely in this industrial park. The present study gave us a better understanding of the whole picture of the resistome and virulome in the soil of the industrial park and suggested that we should treat the industrial park as a whole in the surveillance and maintenance of ARGs.
Mostrar más [+] Menos [-]Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea Texto completo
2021
Jo, Hyejun | Raza, Shahbaz | Farooq, Adeel | Kim, Jungman | Unno, Tatsuya
The abuse or misuse of antibiotics is directly linked to the emergence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) in the environment. Most fish farms located on Jeju Island operate a flow-through system that pumps in seawater for fish farming and discharges it back to the ocean. To investigate the amount of ARGs that these fish farm effluents discharge into the marine environment, we conducted a metagenomic-based resistome analysis. We observed higher levels of ARGs in fish farm effluents than in seawater at beach and residential areas. A greater proportion of ARGs was found on plasmid rather than on chromosomal DNA, especially for sulfonamide and phenicol classes. The distribution of ARGs did not differ between summer and winter, but the microbial community did. In addition, fish farm samples contained significantly more opportunistic pathogens (i.e., Vibrio, Photobacterium, Aliivibrio, and Tenacibaculum) and virulence factors than non-fish farm samples. Vibrio was the most frequently identified host of ARGs and virulence factors. The presence of Vibrio in the coastal area has been increasing owing to the recent rise in the temperature of seawater. This study suggests the need for actions to treat or monitor ARGs in the coastal areas where fish farms operating a flow-through system are located.
Mostrar más [+] Menos [-]Role of the Nrf2-ARE pathway in perfluorooctanoic acid (PFOA)-induced hepatotoxicity in Rana nigromaculata Texto completo
2018
Tang, Juan | Jia, Xiuying | Gao, Nana | Wu, Yingzhu | Liu, Zhengquan | Lu, Xiangjun | Du, Qiongxia | He, Jianbo | Li, Ning | Chen, Bin | Jiang, Jinxiao | Liu, Wenli | Ding, Ying | Zhu, Weiqin | Zhang, Hangjun
Perfluorooctanoic acid (PFOA) is widely distributed in various environmental media and is toxic to organisms. This study demonstrated that PFOA induces hepatotoxicity in the frog and evaluated the role of CYP3A and the Nrf2-ARE signaling pathway in regulating responses to PFOA-induced hepatotoxicity. Rana nigromaculata were exposed to 0, 0.01, 0.1, 0.5, or 1 mg/L PFOA solutions in a static-renewal system for 14 days. Liver tissue samples were collected 24 h after the last treatment. Hepatic histology was observed by HE staining and transmission electron microscopy. The oxidative stress levels in the liver were measured. The expression levels of CYP3A, Nrf2, NQO1, and HO-1 mRNA were measured by quantitative reverse transcription–polymerase chain reaction. PFOA-treated frog liver tissue exhibited diffuse cell borders, cytoplasmic vacuolization, broken nuclei, nuclear chromatin margination, and swollen mitochondria. In addition, the livers of PFOA-treated frogs showed a significantly elevated content of reactive oxygen species, malondialdehyde, glutathione and glutathione S-transferase activity compared to the livers of control frogs. However, the glutathione peroxidase activities concomitantly decreased in PFOA-treated frogs compared to those in the control group. Furthermore, compared with control frogs, the expression levels of CYP3A, Nrf2, and NQO1 mRNA significantly increased in PFOA-treated frogs. HO-1 mRNA expression remarkably increased only in groups treated with 0.5 or 1 mg/L PFOA. Our results indicate that PFOA induces hepatotoxicity in a dose-dependent manner. Furthermore, the results of the comparison analysis between different gender groups illustrated that PFOA is more toxic to female frogs than male frogs. Our results demonstrated that PFOA causes liver damage and that CYP3A enhances PFOA-induced female frogs hepatotoxicity are more virulent than male through biotransformation, and the activation of the Nrf2-ARE pathway is induced to protect against hepatotoxicity in Rana nigromaculata, all of which provide the scientific basis for the protection of amphibians against environmental contaminants.
Mostrar más [+] Menos [-]Characterization of staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398 Texto completo
2016
Gómez, Paula | Lozano Arizmendi, María del Carmen | Benito Goerlich, Daniel | Estepa, Vanesa | Tenorio, Carmen | Zarazaga, Myriam | Torres, Carmen
The objective of this study was to determine the prevalence of Staphylococcus in urban wastewater treatment plants (UWTP) of La Rioja (Spain), and to characterize de obtained isolates. 16 wastewater samples (8 influent, 8 effluent) of six UWTPs were seeded on mannitol-salt-agar and oxacillin-resistance-screening-agar-base for staphylococci and methicillin-resistant Staphylococcus aureus recovery. Antimicrobial susceptibility profile was determined for 16 antibiotics and the presence of 35 antimicrobial resistance genes and 14 virulence genes by PCR. S. aureus was typed by spa, agr, and multilocus-sequence-typing, and the presence of immune-evasion-genes cluster was analyzed. Staphylococcus spp. were detected in 13 of 16 tested wastewater samples (81%), although the number of CFU/mL decreased after treatment. 40 staphylococci were recovered (1–5/sample), and 8 of them were identified as S. aureus being typed as (number of strains): spa-t011/agr-II/ST398 (1), spa-t002/agr-II/ST5 (2), spa-t3262/agr-II/ST5 (1), spa-t605/agr-II/ST126 (3), and spa-t878/agr-III/ST2849 (1). S. aureus ST398 strain was methicillin-resistant and showed a multidrug resistance phenotype. Virulence genes tst, etd, sea, sec, seg, sei, sem, sen, seo, and seu, were detected among S. aureus and only ST5 strains showed genes of immune evasion cluster. Thirty-two coagulase-negative Staphylococcus of 12 different species were recovered (number of strains): Staphylococcus equorum (7), Staphylococcus vitulinus (4), Staphylococcus lentus (4), Staphylococcus sciuri (4), Staphylococcus fleurettii (2), Staphylococcus haemolyticus (2), Staphylococcus hominis (2), Staphylococcus saprophyticus (2), Staphylococcus succinus (2), Staphylococcus capitis (1), Staphylococcus cohnii (1), and Staphylococcus epidermidis (1). Five presented a multidrug resistance phenotype. The following resistance and virulence genes were found: mecA, lnu(A), vga(A), tet(K), erm(C), msr(A)/(B), mph(C), tst, and sem. We found that Staphylococcus spp. are normal contaminants of urban wastewater, including different lineages of S. aureus and a high diversity of coagulase-negative species. The presence of multiple resistance and virulence genes, including mecA, in staphylococci of wastewater can be a concern for the public health.
Mostrar más [+] Menos [-]Multiple sequence types, virulence determinants and antimicrobial resistance genes in multidrug- and colistin-resistant Escherichia coli from agricultural and non-agricultural soils Texto completo
2021
Furlan, João Pedro Rueda | Stehling, Eliana Guedes
In soils, the presence of clinically relevant bacteria carrying ARGs, including extended-spectrum β-lactamase- and plasmid-mediated AmpC β-lactamase-encoding genes, is an underestimated public health problem that requires more attention. For this investigation, 300 samples from agricultural and non-agricultural soils were used to obtain 41 MDR E. coli isolates, standing out the resistance to β-lactams, fluoroquinolones and colistin. Virulence genes related to diarrheagenic E. coli and extraintestinal pathogenic E. coli were detected. Several ARGs were found, highlighting the presence of at least one β-lactamase-encoding gene (blaTEM, blaCMY, blaSHV, blaOXA₋₁₋ₗᵢₖₑ, blaCTX₋M₋₂, and/or blaCTX₋M₋₁₅) in each isolate. Among the fluoroquinolone-resistant E. coli isolates, the plasmid-mediated quinolone resistance genes (qnrB and oqxA) and substitutions in the quinolone resistance-determining regions were detected. Some isolates were resistant to colistin (MICs of 4–8 mg/L) and, although no mcr-like gene was detected, substitutions in the two-component systems involving PhoP/PhoQ and PmrA/PmrB were found. Furthermore, the E. coli isolates presented plasmids and class 1 integrons, the last one detected in all isolates. The ARGs blaTEM, aadA and dfrA and the lpfA virulence-associated gene presented statistically significant differences (P < 0.05) in agricultural soils, while the blaOXA₋₁₋ₗᵢₖₑ gene presented a statistically significant difference in non-agricultural soils. Thirty-eight sequence types (STs) were identified among the isolates, spotlighting the 20 different STs that carried blaCMY and blaCTX₋M₋ₜyₚₑ genes and those commonly reported in infections worldwide. The occurrence of virulent, multidrug- and colistin-resistant E. coli isolates in soils could lead to contamination of surrounding environments and food, increasing the risk of human and animal exposure. Therefore, this study contributes to a better understanding of E. coli in soils and reinforces the importance of the One Health approach to antimicrobial resistance surveillance.
Mostrar más [+] Menos [-]