Refinar búsqueda
Resultados 1-10 de 76
Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis
2021
Lee, Seul Bee | Lee, Jechan | Tsang, Yiu Fai | Kim, Young-Min | Jae, Jungho | Jung, Sang-Chul | Park, Young-Kwon
In this study, wasted mask is chosen as a pyrolysis feedstock whose generation has incredibly increased these days due to COVID-19. We suggest a way to produce value-added chemicals (e.g., aromatic compounds) from the mask with high amounts through catalytic fast pyrolysis (CFP). To this end, the effects of zeolite catalyst properties on the upgradation efficiency of pyrolytic products produced from pyrolysis of wasted mask were investigated. The compositions and yields of pyrolytic gases and oils were characterized as functions of pyrolysis temperature and the type of zeolite catalyst (HBeta, HY, and HZSM-5), including the mesoporous catalyst of Al-MCM-41. The mask was pyrolyzed in a fixed bed reactor, and the pyrolysis gases evolved in the reactor was routed to a secondary reactor inside which the zeolite catalyst was loaded. It was chosen 550 °C as the CFP temperature to compare the catalyst performance for the production of benzene, toluene, ethylbenzene, and xylene (BTEX) because this temperature gave the highest oil yield (80.7 wt%) during the non-catalytic pyrolysis process. The large pore zeolite group of HBeta and HY led to 134% and 67% higher BTEX concentrations than HZSM-5, respectively, likely because they had larger pores, higher surface areas, and higher acid site density than the HZSM-5. This is the first report of the effect of zeolite characteristics on BTEX production via CFP.
Mostrar más [+] Menos [-]Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure
2020
Yang, Xiao-Xiao | Tian, Tian-Tian | Qiao, Wei | Tian, Zhe | Yang, Min | Zhang, Yu | Li, Jiu-Yi
The use of the phenicol antibiotic florfenicol in livestock can select for the optrA gene, which also confers resistance to the critically important oxazolidinone antibiotic linezolid. However, the occurrence and dissemination of florfenicol and linezolid cross-resistance genes in anaerobic treatment systems for livestock waste are unknown. Herein, the phenotypes and genotypes (optrA, fexA, fexB, and cfr) of florfenicol and linezolid cross-resistance were investigated in 339 enterococci strains isolated from lab- and full-scale mesophilic anaerobic digestion systems treating swine waste. It was found that optrA, fexA, and fexB were frequently detected in isolated enterococci in both systems by PCR screening, whereas cfr was not detected. The most abundant gene was optrA, which was detected in 73.5% (n = 50) and 38.9% (n = 23) of enterococci isolates in the full-scale influent and effluent, respectively. Most strains carried more than two resistance genes, and the average percentage of co-occurrence of optrA/fexA was 16.6%. Based on minimum inhibitory concentrations of the enterococci strain phenotypes, 85.7%, 77.5%, and 77.5% of strains in influent were resistant to chloramphenicol, florfenicol, and linezolid, respectively, while 56.3%, 65.2%, and 13% in the effluent isolates were found, respectively, which was consistent with the genotype results. The phenotypes and genotypes of florfenicol and linezolid resistance were relative stable in the enterococci isolated from the influent and effluent in lab-scale anaerobic digestion system. The findings signify the enterococci isolates harboring the optrA gene remained in effluents of both full- and lab-scale swine waste anaerobic digestion system; hence, effective management strategies should be implemented to prevent the discharge of antibiotic resistance from the livestock waste treatment systems.
Mostrar más [+] Menos [-]Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems
2019
Xu, Yingfeng | Ge, Zhipeng | Zhang, Xueqin | Feng, Huajun | Ying, Xianbin | Huang, Baocheng | Shen, Dongsheng | Wang, Meizhen | Zhou, Yuyang | Wang, Yanfeng | Yu, Hanqing
Bioelectrochemical systems (BESs) have been widely investigated for recalcitrant waste treatment mainly because of their waste removal effectiveness. Electroactive microbes (EMs) have long been thought to contribute to the high effectiveness by interacting with electrodes via electron chains. However, this work demonstrated the dispensable role of EMs for enhanced recalcitrant contamination degradation in BESs. We revealed enhanced p-fluoronitrobenzene (p-FNB) degradation in a BES by observing a defluorination efficiency that was three times higher than that in biodegradation or electrochemical processes. Such an improvement was achieved by the collaborative roles of electrode biofilms and planktonic microbes, as their individual contributions to p-FNB degradation were found to be similarly stimulated by electricity. However, no bioelectrochemical activity was found in either the electrode biofilms or the planktonic microbes during stimulated p-FNB degradation; because no biocatalytically reductive or oxidative turnovers were observed on cyclic voltammetry curves. The non-involvement of EMs was further proven by the similar microbial community evolution for biofilms and planktonic microbes. In summary, we proposed a mechanism for indirect electrical stimulation of microbial metabolism by electrochemically generating the active mediator p-fluoroaniline (p-FA) and further degradation by a sequential combination of electrochemical p-FNB reduction and biological p-FA oxidation by non-EMs.
Mostrar más [+] Menos [-]The occurrence, distribution and removal of adsorbable organic halogens (AOX) in a typical fine chemical industrial park
2022
Xu, Ranyun | Chi, Tongtong | Ren, Hang | Li, Feifei | Tian, Jinping | Chen, Lyujun
Coastal water quality in China has been impacted by direct discharge of industrial wastewater, and various kinds of AOX pollutants have been detected in the seawater and sediment. As the dominant pollution source of Hangzhou Bay, a typical fine chemical industry park “HSEDA” was selected as the study area in this research. The AOX in both wastewater and sludge phases from 22 large-scaled enterprises were simultaneously investigated. The results quantitatively illustrated the AOX flows from engineered wastewater and sludge treatment systems to natural environment. It can be seen that industrial enterprises discharged at least 160 t AOX every year, and about 105.4 t/a AOX eventually entered the natural environment. The dye manufacturing industry, which accounted for more than 60% of the total AOX emission load in HSEDA, was identified as the AOX pollution-intensive sector. The occurrence, characteristic pollutants and fate of AOX in dye wastewater were discussed, on the basis of which the improvements of cleaner production and wastewater treatment technologies have been put forward.
Mostrar más [+] Menos [-]Biomass utilization and production of biofuels from carbon neutral materials
2021
Srivastava, Rajesh K. | Shetti, Nagaraj P. | Reddy, Kakarla Raghava | Kwon, Eilhann E. | Nadagouda, Mallikarjuna N. | Aminabhavi, Tejraj M.
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world’s energy need by producing least amount of toxic gases (reduction up to 20–70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Mostrar más [+] Menos [-]Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources
2020
Massimi, Lorenzo | Ristorini, Martina | Simonetti, Giulia | Frezzini, Maria Agostina | Astolfi, Maria Luisa | Canepari, Silvia
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2′,7′-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPᴬᴬ, OPᴰCFᴴ and OPᴰᵀᵀ), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM₁₀ samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPᴬᴬ was particularly sensitive toward coarse particles released from the railway, OPᴰCFᴴ was sensible to fine particles released from the steel plant and domestic biomass heating, and OPᴰᵀᵀ was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
Mostrar más [+] Menos [-]Are biodegradable plastics a promising solution to solve the global plastic pollution?
2020
Shen, Maocai | Song, Biao | Zeng, Guangming | Zhang, Yaxin | Huang, Wei | Wen, Xiaofeng | Tang, Wangwang
A large amount of plastic waste has been discharged into the environment worldwide, which causes the current white pollution problem. The accumulated waste plastics in the environment can be furtherly degraded into small pieces such microplastics and nanoplastics through weathering, which will do more harm to the environment and humans than large plastics. Therefore, plastic production and disposal are needed to be considered. Biodegradable plastics (BPs) have become the focus of recent research due to their potential biodegradability and harmlessness, which would be the most effective approach to manage the issue of plastic waste environmental accumulation. However, in the long run, it is uncertain whether BPs can be a promising solution to waste disposal and global plastic pollution. Consequently, both sides of the dispute are discussed in this paper. At present, most conventional plastics can not be replaced by theses BPs. Biodegradation of BPs needs certain environmental conditions, which are not always reliable in the environment. Additionally, changes in human behavioral awareness will also affect the development and application of BPs. BPs should not be considered as a technical solution, thus excusing our environmental responsibility, because littering does not change with the promotion of an effective technology. As such, the conclusion is that BPs may be a part of the solution. The effectiveness in providing environmentally solutions for plastic waste management depends on the combination of affordable waste classification technologies and investment in organic waste treatment facilities. Therefore, there is still a long way to go to solve the global plastic pollution through BPs.
Mostrar más [+] Menos [-]Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation
2020
Wang, Gang | Han, Neng | Liu, Li | Ke, Zhengchen | Li, Baoguo | Chen, Guowei
Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 10⁶ electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S. oneidensis MR-1 with nearly doubled maximum specific growth rate, albeit with clearly increased lag time, as compared with that of none-roxarsone scenario. These findings provide, at the first time, basic biostoichiometry of S. oneidensis MR-1 induced roxarsone biotransformation, which may shed lights for full understanding of roxarsone transformation process in waste treatment systems that are necessary for engineering practice and/or environmental risks assessment.
Mostrar más [+] Menos [-]COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources
2020
Hendryx, Michael | Luo, Juhua
The novel coronavirus disease (COVID-19) is primarily respiratory in nature, and as such, there is interest in examining whether air pollution might contribute to disease susceptibility or outcome. We merged data on COVID-19 cumulative prevalence and fatality rates as of May 31, 2020 with 2014–2019 pollution data from the US Environmental Protection Agency Environmental Justice Screen (EJSCREEN), with control for state testing rates, population density, and population covariate data from the County Health Rankings. Pollution data included three types of air emission concentrations (particulate matter<2.5 μm (PM2.5), ozone and diesel particulate matter (DPM)), and four pollution source variables (proximity to traffic, National Priority List sites, Risk Management Plan (RMP) sites, and hazardous waste treatment, storage and disposal facilities (TSDFs)). Results of mixed model linear multiple regression analyses indicated that, controlling for covariates, COVID-19 prevalence and fatality rates were significantly associated with greater DPM. Proximity to TSDFs was associated to greater fatality rates, and proximity to RMPs was associated with greater prevalence rates. Results are consistent with previous research indicating that air pollution increases susceptibility to respiratory viral pathogens. Results should be interpreted cautiously given the ecological design, the time lag between exposure and outcome, and the uncertainties in measuring COVID-19 prevalence. Areas with worse prior air quality, especially higher concentrations of diesel exhaust, may be at greater COVID-19 risk, although further studies are needed to confirm these relationships.
Mostrar más [+] Menos [-]Ovarian cancer mortality and industrial pollution
2015
García-Pérez, Javier | Lope, Virginia | López-Abente, Gonzalo | González Sánchez, Mario | Fernández-Navarro, Pablo
We investigated whether there might be excess ovarian cancer mortality among women residing near Spanish industries, according to different categories of industrial groups and toxic substances. An ecologic study was designed to examine ovarian cancer mortality at a municipal level (period 1997–2006). Population exposure to pollution was estimated by means of distance from town to facility. Using Poisson regression models, we assessed the relative risk of dying from ovarian cancer in zones around installations, and analyzed the effect of industrial groups and pollutant substances. Excess ovarian cancer mortality was detected in the vicinity of all sectors combined, and, principally, near refineries, fertilizers plants, glass production, paper production, food/beverage sector, waste treatment plants, pharmaceutical industry and ceramic. Insofar as substances were concerned, statistically significant associations were observed for installations releasing metals and polycyclic aromatic chemicals. These results support that residing near industries could be a risk factor for ovarian cancer mortality.
Mostrar más [+] Menos [-]