Refinar búsqueda
Resultados 1-10 de 59
Accumulation of atmospheric deposition of As, Cd and Pb by bush bean plants
2015
De Temmerman, L. | Waegeneers, N. | Ruttens, A. | Vandermeiren, K.
Bush bean (Phaseolus vulgaris) was exposed to atmospheric deposition of As, Cd and Pb in a polluted and a reference area. The atmospheric deposition of these elements was significantly related to the concentrations in leaves, stems and pods at green harvest. Surprisingly there was also a clear relation for As and Pb in the seeds at dry harvest, even though these seeds were covered by the husks. Root uptake of accumulated atmospheric deposits was not likely in such a short term experiment, as confirmed by the fact that soil pore water analysis did not reveal significant differences in trace element concentrations in the different exposure areas. For biomonitoring purposes, the leaves of bush bean are the most suitable, but also washed or unwashed pods can be used. This means that the obtained relationships are suitable to estimate the transfer of airborne trace elements in the food chain via bush bean.
Mostrar más [+] Menos [-]Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique
2015
Huang, Siming | He, Shuming | Xu, Hao | Wu, Peiyan | Jiang, Ruifen | Zhu, Fang | Luan, Tiangang | Ouyang, Gangfeng
An on-site active solid-phase microextraction (SPME) sampling technique coupled with gas chromatography-mass spectrometry (GC–MS) for sampling and monitoring 16 polycyclic aromatic hydrocarbons (PAHs) and 8 organochlorine pesticides (OCPs) in seawater was developed. Laboratory experiments demonstrated that the sampling-rate calibration method was practical and could be used for the quantification of on-site sampling. The proposed method was employed for field tests which covered large amounts of water samples in the Pearl River Estuary in rainy and dry seasons. The on-site SPME sampling method can avoid the contamination of sample, the losses of analytes during sample transportation, as well as the usage of solvent and time-consuming sample preparation process. Results indicated that the technique with the designed device can address the requirement of modern environment water analysis. In addition, the sources, bioaccumulation and potential risk to human of the PAHs and OCPs in seawater of the Pearl River Estuary were discussed.
Mostrar más [+] Menos [-]Multiple stable isotopes and geochemical approaches to elucidate groundwater salinity and contamination in the critical coastal zone: A case from the Bou-areg and Gareb aquifers (North-Eastern Morocco)
2022
Elmeknassi, Malak | Bouchaou, Lhoussaine | El Mandour, Abdennabi | Elgettafi, Mohammed | Himi, Mahjoub | Casas, Albert
Mediterranean areas are characterized by complex hydrogeological systems, where water resources are faced with several issues such as salinity and pollution. Fifty-one water samples were gathered from the Bou-areg coastal and the Gareb aquifers to evaluate the source of water salinity and to reveal the processes of the different sources of pollution using a variety of chemical and isotopic indicators (δ²H–H2O, δ¹⁸O–H2O, δ³⁴S–SO4, and δ¹⁸O–SO4). The results of the hydrochemical analysis of water samples show that the order of dominated elements is Cl⁻ > HCO₃⁻ > SO4₂⁻ > NO₃⁻ and Na⁺ > Ca²⁺ > Mg²⁺ > K⁺ and evidenced extremely high salinity levels (EC up to 22000 μS/cm). All samples exceeded the WHO drinking water guidelines, making them unfit for human consumption. Ion ratio diagrams, isotopic results, and graphical comparing indicate that the mineralization of groundwater in the area, is controlled by carbonate dissolution, evaporite dissolution, ion exchange, and sewage invasion. The return of irrigation water plays a significant role as well in the groundwater recharge and its mineralization by fertilizers mainly. Evaporites (Gypsum), sewage, and fertilizers constitute the main sources of sulfates in the investigated water resources. These scientific results will be an added value for decision-makers to more improve the sustainable management of groundwater in water-stressed regions. The use of chemical and isotopic tracers once again shows their relevance in such zones where systematic monitoring is lacking.
Mostrar más [+] Menos [-]Indices and models of surface water quality assessment: Review and perspectives
2022
Yan, Tao | Shen, Shui-Long | Zhou, Annan
Many technologies have been designed to monitor, evaluate, and improve surface water quality, as high-quality water is essential for human activities including agriculture, livestock, and industry. As such, in this study, we investigated water quality indices (WQIs), trophic status indices (TSIs), and heavy metal indices (HMIs) for assessing surface water quality. Based on these indices, we summarised and compared water assessment models using expert system (ES) and machine learning (ML) methods. We also discussed the current status and future perspectives of water quality management. The results of our analyses showed that assessment indices can be used in three aspects of surface water quality assessment: WQIs are aggregated from multiple parameters and commonly used in surface water quality classification; TSIs are calculated from the concentrations of different nutrients required for algae and bacteria, and employed to evaluate the eutrophication levels of lakes and reservoirs; HMIs are mainly applied for human health risk assessment and the analysis of correlation of heavy metal sources. ES- and ML-based assessment models have been developed to efficiently generate assessment indices and predict water quality status based on big data obtained from new techniques. By implementing dynamic monitoring and analysis of water quality, we designed a next-generation water quality management system based on the above indices and assessment models, which shows promise for improving the accuracy of water quality assessment.
Mostrar más [+] Menos [-]Evaluation and variation trends analysis of water quality in response to water regime changes in a typical river-connected lake (Dongting Lake), China
2021
Geng, Mingming | Wang, Kelin | Yang, Nan | Li, Feng | Zou, Yeai | Chen, Xinsheng | Deng, Zhengmiao | Xie, Yonghong
Lake water pollution has caused many serious ecological issues globally. An emerging public concern over water quality deterioration in lakes has heightened the need to evaluate the water quality of lakes at long-term scales, particularly for those with high hydrological alterations. This study combines the Mann–Kendall (M–K) test and self-organising map (SOM) to characterise and evaluate water quality trends in Dongting Lake, China, from 1991 to 2018, before and after the inauguration of the Three Gorges Dam (TGD). Herein, six water quality parameters were selected, namely pH, permanganate index (CODMₙ), ammonia nitrogen (NH₃–N), total nitrogen (TN), total phosphorus (TP), and the five-day biochemical oxygen demand (BOD₅). Our results show that the concentrations of TN and BOD₅ increase significantly throughout the study period (|Z| ≥ 1.96). The number of abrupt change points for the six water quality parameters in the post-TGD period was greater than that in the pre-TGD period, which indicates an increased risk of water deterioration in the post-TGD period. The SOM results show that the pH values ranged from 7.64 to 7.85 among the four clusters; besides, the concentrations of the remaining water quality parameters from 1991 to 1997 and 2000 to 2003 were relatively lower, suggesting that the water quality in the pre-TGD period was better. The classification of TN and TP ranged from Level Ⅳ–Ⅴ among the clusters, which did not satisfy the level Ⅲ standard for potable water, thereby posing a higher ecological risk to the Dongting Lake. These results indicate the deterioration of the water quality in Dongting Lake during the post-TGD period under the influences of pollution load and hydrological regulation. Therefore, strict controls on the external nutrient loading and hydrological regulations should be considered for water quality management.
Mostrar más [+] Menos [-]Biomonitoring freshwater FISH farms by measuring nitrogen concentrations and the δ15N signal in living and devitalized moss transplants
2019
Carballeira, C. | Carballeira, A. | Aboal, J.R. | Fernández, J.A.
The trophic balance of freshwater aquaculture activities has traditionally been monitored by chemical analysis of water; however, the parameters measured are usually characterized by high temporal variability. Aquatic mosses can be used as biomonitors as they integrate both continuous and episodic contamination events. Here we report, for the first time, a method for monitoring N enrichment in the surroundings of fish farms by measuring the N content and isotopic signal (δ15N) of transplanted living and devitalized specimens of the aquatic moss Fontinalis antipyretica. For this purpose, moss samples (“moss bags”) were exposed at increasing distances (10, 100, 300 and 1000 m) up- and downstream of the effluent discharge points of four trout farms, for 10 and 30 days. The low natural (background) variability in δ15N in upstream samples enabled detection of outlier values, caused by aquaculture discharges, at distances of 10 and 100 m downstream, especially in devitalized moss and after 10 days of exposure. However, the unexpectedly low N contents of moss samples exposed close to the discharge points complicates interpretation of the high levels of N forms detected by conventional physicochemical analysis of water. Although the mechanisms that modify N parameters in moss tissues were not clear, measurement of the isotopic signal δ15N in devitalized moss exposed for 10 days proved useful for monitoring the N pollution associated with intensive freshwater aquaculture.
Mostrar más [+] Menos [-]A simple inexpensive gas phase chemiluminescence analyzer for measuring trace levels of arsenic in drinking water
2010
Sengupta, Mrinal K. | Hossain, Zafreen A. | Ohira, Shin-Ichi | Dasgupta, Purnendu K.
An inexpensive sensitive gas-phase chemiluminescence (GPCL) based analyzer for arsenic is described; this device utilizes manual fluid dispensing operations to reduce size, weight and cost. The analyzer in its present form has a limit of detection (LOD, S/N = 3) of 1.0 μg/L total inorganic As (peak heightbased, 3 mL sample). The system was used to measure low level arsenic in tap water samples from Texas and New Mexico and compared with results obtained by inductively coupled plasma-mass spectrometry (ICP-MS) as well as those from an automated GPCL analyzer. Good correlations were observed. Higher levels of As (50–500 μg/L, As(III), As(V) and mixtures thereof) were spiked into local tap water; the recoveries ranged from 95 ± 2% to 101 ± 1%. A single instrument weighs less than 3 kg, consumes <25 W in power, can be incorporated in a briefcase and constructed for <$US $1000. It is easily usable in the field. An inexpensive instrument capable of measuring down to 1 μg/L As is reported.
Mostrar más [+] Menos [-]On the design and use of a fresh water sampling apparatus to concentrate and extract organic micropollutants on a continuous basis
1991
Turcotte, J. (Universite Laval, Quebec (Canada). Faculte des Sciences et de Genie, Departement de Chimie) | Cote, J.E. | Fraser, E.
Do UK coastal and estuarine water samples pose a phototoxic threat?
2013
Lyons, B.P. | Goodsir, F. | Taylor, N.G.H. | Thain, J.E.
Many studies have investigated phototoxicity under controlled laboratory conditions, however, few have actually demonstrated it occurring in environmental samples. Here we report on the potential for UK marine coastal waters to demonstrate phototoxicity when tested using the oyster embryo (Crassostrea gigas) bioassay in the presence UV light. Subsurface water, sea surface microlayer samples and subsurface water samples that had been extracted through solid phase extraction (SPE) columns were analysed. Results demonstrated that the majority of samples failed to display any phototoxic potential. However, those collected from Belfast Lough did display an increase in toxicity when bioassays were performed in the presence of UV light when compared to identical samples assayed in the absence of UV light. Analysis of water samples at this location identified known phototoxic PAHs, pyrene and fluoranthene. These findings suggest the need to consider the potential UV light has when determining the toxicity of environmental samples.
Mostrar más [+] Menos [-]Impact of biocides on ground and surface water pollution in Jordan [Dams; spray drift; HHDN; Chlordane, Dieldrin, Heptachlor, Lindane]
1991
Al-Shuraiki, Y. (Ministry of Agriculture, Amman (Jordan). Centre for Pesticide Residue and Formulation Control Analysis)