Refinar búsqueda
Resultados 1-10 de 132
Water protection in the Republic of Serbia [Yugoslavia] in the next five-year period of time
2001
Marjanovic, Z. | Damjanovic, M. (Institut za vodoprivredu Jaroslav Cerni, Beograd (Yugoslavia))
This paper is an abstract of the operative program for water protection in the Republic of Serbia (Yugoslavia) for the next five-year period of time. There is a short review on the present water protection status, particularly status of wastewater treatment plants. It includes layouts of water protection solutions in different fields, by priorities, as well as assessment of necessary capital investments for their implementation.
Mostrar más [+] Menos [-]The fish community as an indicator of water quality in the marsh of Kovilj [Serbia, Yugoslavia]
2001
Maletin, S. (Poljoprivredni fakultet, Novi Sad (Yugoslavia)) | Miljanovic, B. | Djukic, N. | Sipos, S.
In order to carry out the program of protection and rational exploitation of Kovilj Marsh (Serbia, Yugoslavia), which is a part of special natural reserve called the Marsh of Kovilj and Petrovaradin, we have done an ecological analysis of the fish community. The research was conducted during the period of "low water", in the autumn 2000, on the following locations: Slajz, Tonja and Arkanj, and we have established the presence of 12 species from 6 different families. The saprobic index of the majority of bioindicative species shows that the water belongs to the beta-mesosaprobic type (the saprobic index according to Pantle-Buck is 2.1). The presence and abundance of certain ecological groups of fish is examined in relation to migration, type of food and type of substrate on which the fish lay their eggs. The results of this examination point to main features of certain localities in this floodplain, as well as to the necessity of taking appropriate measures of protection of this valuable water resource.
Mostrar más [+] Menos [-]Expert systems in water quality management
1999
Djordjevic, B. (Univerzitet u Beogradu, Beograd (Yugoslavia). Gradjevinski fakultet)
Expert system (ES) is a software which unites mathematical models, empirical knowledge, expert evaluation, engineering intuition, heuristic rules and necessary informations which through the inference engine gives useful advise to the decision maker, to reach a correct and timely decision. The objectives of ES cover a wide range of tasks of protection of waters, out of which the following seem to be the most important: diagnostics, monitoring, estimation, interpretation, planning and design of systems, maintenance, trouble shooting, education, management.
Mostrar más [+] Menos [-]The importance of total organic carbon and trihalomethane formation potential in monitoring of groundwater and surface water quality
1999
Ivancev-Tumbas, I. | Dalmacija, B. (Prirodno-matematicki fakultet, Novi Sad (Yugoslavia). Institut za hemiju)
Determination of total organic carbon content (TOC) and trihalomethane formation potential (THMFP) as well as correlation of those two parameters is recommended for monitoring of water bodies which are considered as drinking water resources. Those parameters would enable a categorization of water bodies from the protection point of view as well as from view of their usage as drinking water sources. Relationship between TOC and THMFP is dependent on the origin and the structure of organic matter in water. In this paper the correlation of TOC and THMFP is given for different kind of resources.
Mostrar más [+] Menos [-]Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals Texto completo
2020
Borysov, Arsenii | Tarasenko, Alla | Krisanova, Natalia | Pozdnyakova, Natalia | Pastukhov, Artem | Dudarenko, Marina | Paliienko, Konstantin | Borisova, Tatiana
Smoke from plastic waste incineration in an open air travels worldwide and is a major source of air pollution particulate matter (PM) that is very withstand to degradation and hazard to human health. Suspension of smoke aerosol components in water occurs during rains and fire extinguishing. Here, water-suspended plastic smoke aerosol (WPS) preparations suitable for biotesting were synthesized. It has been revealed using dynamic light scattering that WPS contained major nano-sized (∼30 nm) PM fraction, and this result was confirmed by electron microscopy. Optical absorption of WPS was in the UV region and an increase in λₑₓ led to a red-shift in fluorescence emission with a corresponding decrease in fluorescence intensity. WPS was analyzed in neurotoxicity studies in vitro using presynaptic rat cortex nerve terminals (synaptosomes). Generation of spontaneous reactive oxygen species (ROS) detected using fluorescent dye 2′,7-dichlorofluorescein in nerve terminals was decreased by WPS (10–50 μg/ml) in a dose-dependent manner. WPS also reduced the H₂O₂-evoked ROS production in synaptosomes, thereby influencing cellular oxidative processes and this effect was similar to that for carbon nanodots. WPS (0.1 mg/ml) decreased the synaptosomal membrane potential and synaptic vesicle acidification in fluorimetric experiments. WPS (1.0 mg/ml) attenuated the synaptosomal transporter-mediated uptake of excitatory and inhibitory neurotransmitters, L-[¹⁴C]glutamate and [³H]GABA, respectively. This can lead to an excessive increase in the glutamate concentration in the synaptic cleft and neurotoxicity via over activation of ionotropic glutamate receptors. Therefore, WPS was neurotoxic and provoked presynaptic malfunction through changes of oxidative activity, reduction of the membrane potential, synaptic vesicle acidification, and transporter-mediated uptake of excitatory and inhibitory neurotransmitters in nerve terminals. In summary, synthesis and emission to the environment of ultrafine PM occur during combustion of plastics, thereby polluting air and water resources, and possibly triggering development of neuropathologies.
Mostrar más [+] Menos [-]The utilization of reclaimed water: Possible risks arising from waterborne contaminants Texto completo
2019
Deng, Shenxi | Yan, Xueting | Zhu, Qingqing | Liao, Chunyang
Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.
Mostrar más [+] Menos [-]Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment Texto completo
2017
Chen, Huiting | Reinhard, Martin | Nguyen, Tung Viet | You, Luhua | He, Yiliang | Gin, Karina Yew-Hoong
Understanding the sources, occurrence and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the urban water cycle is important to protect and utilize local water resources. Concentrations of 22 target PFASs and general water quality parameters were determined monthly for a year in filtered water samples from five tributaries and three sampling stations of an urban water body. Of the 22 target PFASs, 17 PFASs were detected with a frequency >93% including PFCAs: C4-C12 perfluoroalkyl carboxylates, C4, C6, C8, and C10 perfluoroalkane sulfonates, perfluorooctane sulfonamides and perfluorooctane sulfonamide substances (FOSAMs), C10 perfluoroalkyl phosphonic acid (C10 PFPA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and C8/C8 perfluoroalkyl phosphinic acid (C8/C8-PFPIA). The most abundant PFASs in water were PFBS (1.4–55 ng/L), PFBA (1.0–23 ng/L), PFOS (1.5–24 ng/L) and PFOA (2.0–21 ng/L). In the tributaries, PFNA concentrations ranged from 1.2 to 87.1 ng/L except in the May 2013 samples of two tributaries, which reached 520 and 260 ng/L. Total PFAS concentrations in the sediment samples ranged from 1.6 to 15 ng/g d.w. with EtFOSAA, PFDoA, PFOS and PFDA being the dominant species. Based on water and sediment data, two types of sources were inferred: one-time or intermittent point sources and continuous non-point sources. FOSAMs and PFOS released continually from non-point sources, C8/C8 PFPIA, PFDoA and PFUnA was released from point sources. The highly water soluble short-chain PFASs including PFBA, PFPeA and PFBS remained predominantly in the water column. The factors governing solution phase concentrations appear to be compound hydrophobicity and sorption to suspended particles. Correlation of the dissolved phase concentrations with precipitation data suggested stormwater was a significant source of PFBA, PFBS, PFUnA and PFDoA. Negative correlations with precipitation indicated sources feeding FOSAA and FOSA directly into the tributaries.
Mostrar más [+] Menos [-]Exploratory study using proton induced X-ray emission analysis and histopathological techniques to determine the toxic burden of environmental pollutants Texto completo
2012
The aim of this novel research was to determine the toxic burden of increased elements in water resources on the inhabitant wild animals (squirrels, turtles, bats), using particle induced x-ray emission (PIXE) and histopathological approaches. PIXE analysis of skin, muscle, lung, liver and kidney revealed significant increase in Al, Cl, Fe, Mg, Mn, Si and V. Moreover, data clearly reflect a significant (P < 0.001) deposition of toxic elements (Al, Cl, Fe and K) in the lung producing interstitial/proliferative pneumonitis, intra-alveolar hemorrhages, and thickening of alveolar capillary walls. The results obtained from the liver samples emphasized that majority of the animals were intoxicated with Cl, Mg, S, Si and V, which have produced profound deterioration and swelling of the hepatocytes. Likewise, histopathology of the kidney sections spotlighted severe nephritis and degenerative changes, which could be associated with the elevated amount of Al, Cl and Mg. This data undoubtedly provide relevant information on the heavy burden of toxic elements and their pathological outcomes in wild animals and highlight their potential risks for human exposure. Thus, the information provided is critical for developing effective strategies in dealing with health hazards associated with elemental exposures.
Mostrar más [+] Menos [-]Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives Texto completo
2020
Al-Thani, R.F. | Yasseen, B.T.
Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives Texto completo
2020
Al-Thani, R.F. | Yasseen, B.T.
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants.
Mostrar más [+] Menos [-]Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives Texto completo
2020
Al-Thani, R.F. | Yasseen, B.T.
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants. | Scopus
Mostrar más [+] Menos [-]Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China Texto completo
2020
Wang, Jingzhe | Shi, Tiezhu | Yu, Danlin | Teng, Dexiong | Ge, Xiangyu | Zhang, Zipeng | Yang, Xiaodong | Wang, Hanxi | Wu, Guofeng
In arid and semi-arid regions, water-quality problems are crucial to local social demand and human well-being. However, the conventional remote sensing-based direct detection of water quality parameters, especially using spectral reflectance of water, must satisfy certain preconditions (e.g., flat water surface and ideal radiation geometry). In this study, we hypothesized that drone-borne hyperspectral imagery of emergent plants could be better applied to retrieval total nitrogen (TN) concentration in water regardless of preconditions possibly due to the spectral responses of emergent plants on nitrogen removal and water purification. To test this hypothesis, a total of 200 groups of bootstrap samples were used to examine the relationship between the extracted TN concentrations from the drone-borne hyperspectral imagery of emergent plants and the experimentally measured TN concentrations in Ebinur Lake Oasis using four machine learning (ML) models (Partial Least Squares (PLS), Random Forest (RF), Extreme Learning Machine (ELM), and Gaussian Process (GP)). Through the introduction of the fractional order derivative (FOD), we build a decision-level fusion (DLF) model to minimize the regression results’ biases of individual ML models. For individual ML model, GP performed the best. Still, the amount of uncertainty in individual ML models renders their performance to be subpar. The introduction of the DLF model greatly minimizes the regression results’ biases. The DLF model allows to reduce potential uncertainties without sacrificing accuracy. In conclusion, the spectral response caused by nitrogen removal and water purification on emergent plants could be used to retrieve TN concentration in water with a DLF model framework. Our study offers a new perspective and a basic scientific support for water quality monitoring in arid regions.
Mostrar más [+] Menos [-]