Refinar búsqueda
Resultados 1-10 de 159
Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation Texto completo
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
Mostrar más [+] Menos [-]Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco) Texto completo
2019
Zouhri, Lahcen | El Amari, Khalid | Marier, David | Benkaddour, Abdelfattah | Hibti, Mohamed
Waste water of the Kettara village, as well as the abandoned tailings, constitute a potential environmental issue with direct consequences on air, soil, water resources qualities and, on human health. In this paper, experimental investigations examine the environmental impact which is induced by the wastewater, mine tailings and the lithological factors of rocks. This multidisciplinary research allows to i) understand the transfer of the Metallic Trace Elements (selenium, arsenic, nickel and zinc) and sulfate ions in the fractured shales media, ii) to assess the water potability by using the microbiological analysis. The microbiological results reveal the domestic impact by the presence of several kinds of bacteria in the groundwater resources: E. coli, Fecal coliforms, Total coliforms, Enterococci, Mesophilic Aerobic Flora, Sulphite-reducing bacteria and Salmonella.Selenium, arsenic and the bacteriological contamination of the groundwater could be explained by five kinds of factors: i) the geological formations and the nature of the hydrogeological system (unconfined layer), ii) the groundwater flow, the hydraulic relation between the hydrogeological wells and, the fractures network in the shale aquifer. The piezometric map allows to highlight the groundwater flow from the North-East to North-West and to the South-West, the drainage axis towards the P21 well and the presence of the dividing axis in the contaminated zone by the arsenic, iii) the absence of the unhealthy habitats with permeable traditional septic tanks in the village; iv) the transfer of the spreading animal excrements from the soil to groundwater and, v) the migration of the wastewater towards downstream of the groundwater flow. The presence of the reed beds could explain the reduction of bacteria in the hydrogeological wells of the study area.
Mostrar más [+] Menos [-]Spatio-temporal variations of shallow and deep well groundwater nitrate concentrations along the Indus River floodplain aquifer in Pakistan Texto completo
2019
Khan, Shahrukh Nawaz | Yasmeen, Tahira | Riaz, Muhammad | Arif, Muhammad Saleem | Rizwan, Muhammad | Ali, Shafaqat | Tariq, Azeem | Jessen, Søren
Excessive use of nitrogenous fertilizers and their improper management in agriculture causes nitrate contamination of surface and groundwater resources. This study was conducted along the seasonally flooded alluvial agricultural area of Indus River Basin to determine the spatial and temporal dynamics of nitrate concentrations in the groundwater along the river. Total of 112 samples were collected from shallow (30–40 ft) and deep groundwater (120–150 ft) wells at seven sites, 25 km apart from each other and covered an area of 170 km along the river, during four sampling campaigns between October 2016 to May 2017 i.e. in start, mid and end of dry season. The study period covered the whole agricultural cycle including the wet summer season with no agricultural activities under flooding and the sampling sites were always less than 2 km from the river bank. Nitrate concentrations of shallow wells were 15–54 and 20–45 mg L⁻¹ during the start and middle of dry season, respectively. However, at the end of the dry season, the highest nitrate concentrations of 35–75 mg L⁻¹ were recorded and 70% of these samples contained nitrate concentrations above the permissible limit 50 mg L⁻¹. Similar seasonal patterns of nitrate concentrations were observed in deep wells, however, δ¹⁸O data suggested lower recharge in deep well than shallow wells. The results illustrated that high nitrate concentrations in shallow wells were associated with high δ¹⁸O values indicating that the quantity of evaporated water infiltrated from the floodplain, possibly from distribution channels, along with the nitrate polluting shallow wells more than the deep wells. At the end of the dry season, nitrate concentrations exceeded the permissible limits in both shallow and deep wells, which possibly happened due to the horizontal movement of groundwater along with the nitrate mixing during vertical seepage of river water to the aquifers.
Mostrar más [+] Menos [-]Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming Texto completo
2018
Kivits, Tano | Broers, Hans Peter | Beeltje, Henry | van Vliet, Mariëlle | Griffioen, Jasper
The combination of emerging antibiotic resistance and lack of discovery of new antibiotic classes poses a threat to future human welfare. Antibiotics are administered to livestock at a large scale and these may enter the environment by the spreading of manure on agricultural fields. They may leach to groundwater, especially in the Netherlands which has some of the most intensive livestock farming and corresponding excessive manure spreading in the world. This study investigates the presence of antibiotics in groundwater in two regions with the most intensive livestock farming in the Netherlands. If so, the hydrochemical conditions were further elaborated. Ten multi-level wells with in total 46 filters were sampled, focusing on relatively young, previously age-dated groundwater below agricultural fields. Twenty-two antibiotics were analyzed belonging to the following antibiotic groups: tetracyclines, sulfonamides, trimethoprims, β-lactams, macrolides, lincosamides, quinolones, nitrofurans and chloramphenicol. The samples were analyzed for these antibiotics by LC-MS/MS ESI-POS/NEG (MRM) preceded by solid phase extraction which resulted in importantly low detection limits. Six antibiotics were found above detection limits in 31 filters in seven wells: sulfamethazine, sulfamethoxazole, lincomycin, chloramphenicol, ciprofloxacin, and sulfadiazine. The concentrations range from 0.3 to 18 ng L−1. Sulfonamides were detected at all measured depths down to 23 meters below surface level with apparent groundwater ages up to 40 years old. No antibiotics were detected below the nitrate/iron redox cline, which suggests that the antibiotics might undergo degradation or attenuation under nitrate-reducing redox conditions. This study provides proof that antibiotics are present in groundwater below agricultural areas in the Netherlands due to the spreading of animal manure.
Mostrar más [+] Menos [-]Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China Texto completo
2018
Hao, Zhuo | Zhang, Xinyu | Gao, Yang | Xu, Zhiwei | Yang, Fengting | Wen, Xuefa | Wang, Yueming
By identifying the main sources of nitrate (NO3−) can obtain useful information to support the management of NO3− pollution, particularly in subtropical catchments with shallow drinking water wells. This study used water chemistry and dual stable isotopes δ15N and δ18O methods to assess seasonal and spatial variations of NO3− in precipitation, surface water, and groundwater in an agricultural and forest subtropical catchment in Jiangxi Province, China. The maximum concentrations of nitrate-nitrogen (NO3−-N) and ammonium-nitrogen (NH4+-N) were 10.4 and 10.8 mg L−1in samples collected from 221 rainfall events from 2011 to 2013. About 4.4% and 12.3% NH4+-N concentrations of surface water and groundwater exceeded the thresholds of 1.0 and 0.2 mg L−1. The NO3−-N concentrations in surface water were closely correlated with NH4+-N concentrations in surface water and groundwater (r = −0.71 and r = −0.71, P < 0.05). The concentrations of NH4+-N and NO3−-N were significantly higher in a fishery pond and nearby drinking wells than in other monitoring points. Annual exports of NO3−-N and NH4+-N were 4.06 × 104 and 8.14 × 103 kg yr−1, respectively and NO3−-N is the main form of N loss. The δ15N values ranged from 0‰ to 20‰ in surface water and groundwater, and the δ18O values ranged from 0‰ to 15‰ and 1‰–13‰, respectively. Dual stable isotope natural abundance distribution and water chemistry [NO3−]/[Cl−] molar ratio information suggested that manure and sewage and soil N were the main sources of NO3− in surface water and manure and sewage in groundwater in summer and winter. In spring, water occurred denitrification and ammonium fertilizer, manure and sewage were the main sources of NO3− in surface water and groundwater which sampling points were closer residential area and fish ponds than paddy field and local farmers used more Manure. Manure applications should be reasonable around drinking water wells to protect the drinking water quality.
Mostrar más [+] Menos [-]Environmental and individual PAH exposures near rural natural gas extraction Texto completo
2018
Paulik, L Blair | Hobbie, Kevin A. | Rohlman, Diana | Smith, Brian W. | Scott, Richard P. | Kincl, Laurel | Haynes, Erin N. | Anderson, Kim A.
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants’ homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
Mostrar más [+] Menos [-]Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD Texto completo
2017
Chen, Huan | Carter, Kimberly E.
Various toxic chemicals used in hydraulic fracturing fluids may influence the inherent health risks associated with these operations. This study investigated the possible occupational inhalation exposures and potential risks related to the volatile organic compounds (VOCs) from chemical storage tanks and flowback pits used in hydraulic fracturing. Potential risks were evaluated based on radial distances between 5 m and 180 m from the wells for 23 contaminants with known inhalation reference concentration (RfC) or inhalation unit risks (IUR). Results show that chemicals used in 12.4% of the wells posed a potential acute non-cancer risks for exposure and 0.11% of the wells with may provide chronic non-cancer risks for exposure. Chemicals used in 7.5% of the wells were associated with potential acute cancer risks for exposure. Those chemicals used in 5.8% of the wells may be linked to chronic cancer risks for exposure. While eight organic compounds were associated with acute non-cancer risks for exposure (>1), methanol the major compound in the chemical storage tanks (1.00–45.49) in 7,282 hydraulic fracturing wells. Wells with chemicals additives containing formaldehyde exhibited both acute and chronic cancer risks for exposure with IUR greater than 10⁻⁶, suggesting formaldehyde was the dominant contributor to both types of risks for exposure in hydraulic fracturing. This study also found that due to other existing on-site emission sources of VOCs and the geographically compounded air concentrations from other surrounding wells, chemical emissions data from storage tanks and flowback pits used in this study were lower than reported concentrations from field measurements where higher occupational inhalation risks for exposure may be expected.
Mostrar más [+] Menos [-]Antimony as a global dilemma: Geochemistry, mobility, fate and transport Texto completo
2017
Herath, Indika | Vithanage, Meththika | Bundschuh, Jochen
Elevated concentrations of antimony (Sb) in environmental, biological and geochemical systems originating from natural, geological and anthropogenic sources are of particular global concern. This review presents a critical overview of natural geochemical processes which trigger the mobilization of Sb from its host mineral phases and related rocks to the surrounding environments. The primary source of Sb contamination in the environment is geogenic. The geochemical characteristics of Sb are determined by its oxidation states, speciation and redox transformation. Oxidative dissolution of sulfide minerals and aqueous dissolution are the most prevalent geochemical mechanisms for the release of Sb to the environment. Transformation of mobile forms of Sb is predominantly controlled by naturally occurring precipitation and adsorption processes. Oxyhydroxides of iron, manganese and aluminum minerals have been recognized as naturally occurring Sb sequestrating agents in the environment. Antimony is also immobilized in the natural environment via precipitation with alkali and heavy metals resulting extremely stable mineral phases, such as schafarzikite, tripuhyite and calcium antimonates. Many key aspects, including detection, quantification, and speciation of Sb in different environmental systems as well as its actual human exposure remain poorly understood. Identification of global distribution of most vulnerable Sb-contaminated regions/countries along with aquifer sediments is an urgent necessity for the installation of safe drinking water wells. Such approaches could provide the global population Sb-safe drinking and irrigation water and hinder the propagation of Sb in toxic levels through the food chain. Hence, raising awareness through the mobility, fate and transport of Sb as well as further transdisciplinary research on Sb from global scientific communities will be a crucial stage to establish a sustainable Sb mitigation on a global scale.
Mostrar más [+] Menos [-]Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco) Texto completo
2017
Moyé, Julien | Picard-Lesteven, Tanguy | Zouhri, Lahcen | El Amari, Khalid | Hibti, Mohamed | Benkaddour, Abdelfattah
Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities.
Mostrar más [+] Menos [-]Deep challenges for China's war on water pollution Texto completo
2016
Han, Dongmei | Currell, Matthew J. | Cao, Guoliang
China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO3N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ15N and δ18ONO3 values ranging from −14.9‰ to 35.5‰ and −8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort.
Mostrar más [+] Menos [-]