Refinar búsqueda
Resultados 1-10 de 75
Characterization of allergenicity of Platanus pollen allergen a 3 (Pla a 3) after exposure to NO2 and O3
2021
Zhou, Shumin | Wang, Xingzi | Lu, Senlin | Yao, Chuanhe | Zhang, Luying | Rao, Lanfang | Liu, Xinchun | Zhang, Wei | Li, Shuijun | Wang, Weiqian | Wang, Qingyue
Pollen allergens, widely present in the atmosphere, are the main cause of seasonal respiratory diseases that affect millions of people worldwide. Although previous studies have reported that nitrogen dioxide (NO₂) and ozone (O₃) promote pollen allergy, the specific biological processes and underlying mechanisms remain less understood. In this study, Platanus pollen grains were exposed to gaseous pollutants (NO₂ and O₃). We employed environmental electron microscopy, flow cytometry, western blot assay, enzyme-linked immunoassay, ultraviolet absorption spectrometry, circular dichroism, and protein mass spectrometry to characterise the subpollen particles (SPPs) released from pollen grains. Furthermore, we determined the immunogenicity and pathogenicity induced by Platanus pollen allergen a 3 (Pla a 3). Our results demonstrated that NO₂ and O₃ could damage the pollen cell membranes in SPPs and increase the amount of Pla a 3 allergen released into the atmosphere. Additionally, NO₂ and O₃ altered the structure of Pla a3 protein through nitrification and oxidation, which not only enhanced the immunogenicity of allergens but also increased the stability of the protein. In vivo analysis using an animal model indicated that NO₂ and O₃ greatly aggravated pollen-induced pneumonia. Thus, our study provides guidance for the prevention of pollen allergic diseases.
Mostrar más [+] Menos [-]The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells
2020
Xia, Yongpeng | Yang, Xiaobo | Lu, Jingchun | Xie, Qixin | Ye, Anfang | Sun, Wenjun
Glyphosate is the most widely used herbicide in the world. In recent years, many studies have demonstrated that exposure to glyphosate-based herbicides (GHBs) was related to the decrease of serum testosterone and the decline in semen quality. However, the molecular mechanism of glyphosate-induced testosterone synthesis disorders is still unclear. In the present study, the effects of glyphosate on testosterone secretion and the role of endoplasmic reticulum (ER) stress in the process were investigated in TM3 cells. The effects of glyphosate at different concentrations on the viability of TM3 cells were detected by CCK8 method. The effect of glyphosate exposure on testosterone secretion was determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of testosterone synthases and ER stress-related proteins were detected by Western blot and Immunofluorescence stain. Results showed that exposure to glyphosate at concentrations below 200 mg/L had no effect on cell viability, while the glyphosate above 0.5 mg/L could inhibit the testosterone secretion in TM3 cells. Treatment TM3 cells with glyphosate at 5 mg/L not only reduced the protein levels of testosterone synthase StAR and CYP17A1, inhibited testosterone secretion, but also increased the protein level of ER stress molecule Bip and promoted the phosphorylation of PERK and eIF2α. Pretreatment cells with PBA, an inhibitor of ER stress, alleviated glyphosate-induced increase in Bip, p-PERK and p-eIF2α protein levels, meanwhile rescuing glyphosate-induced testosterone synthesis disorders. When pretreatment with GSK2606414, a PERK inhibitor, the glyphosate-induced phosphorylation of PERK and eIF2α was blocked, and the glyphosate-inhibited testosterone synthesis and secretion was also restored. Overall, our findings suggest that glyphosate can interfere with the expression of StAR and CYP17A1 and inhibit testosterone synthesis and secretion via ER stress-mediated the activation of PERK/eIF2α signaling pathway in Leydig cells.
Mostrar más [+] Menos [-]Etoxazole induces testicular malfunction in mice by dysregulating mitochondrial function and calcium homeostasis
2020
Epidemiological relationships between pesticide use and male infertility have been suggested for a long time. Etoxazole (ETX), an oxazoline pesticide, has been extensively used for pest eradication. It is considered relatively safe and has low mammalian toxicity because it specifically inhibits chitin synthesis. However, ETX may have toxic effects on the reproductive system. In this study, we examined the effects of ETX on the reproductive system using mouse testis cell lines (TM3 for Leydig cells and TM4 for Sertoli cells) and C57BL/6 male mice. We confirmed that ETX has anti-proliferative effects on the TM3 and TM4 cell lines. Moreover, ETX induced mitochondrial dysfunction and hampers calcium homeostasis. Western blot analysis of MAPK and Akt signaling cascades was performed to demonstrate the mode of action of ETX at a molecular level. Moreover, ETX induced misregulation of genes related to testicular function. Upon oral administration of ETX in C57BL/6 male mice, testis weight was reduced and transcriptional expression related to testis function was altered. These results indicate that ETX induces testicular toxicity by inducing mitochondrial dysfunction and calcium imbalance and regulating gene expression.
Mostrar más [+] Menos [-]Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies
2020
Liang, Zhen | Gao, Yan | He, Yuyang | Han, Yongli | Manthari, Ram Kumar | Tikka, Chiranjeevi | Chen, Chenkai | Wang, Jundong | Zhang, Jianhai
It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.
Mostrar más [+] Menos [-]Taxifolin ameliorates DEHP-induced cardiomyocyte hypertrophy via attenuating mitochondrial dysfunction and glycometabolism disorder in chicken
2019
Cai, Jingzeng | Shi, Guangliang | Zhang, Yuan | Zheng, Yingying | Yang, Jie | Liu, Qi | Gong, Yafan | Yu, Dahai | Zhang, Ziwei
Di-(2-ethylhexyl) phthalate (DEHP) is a prevalent environmental contaminant that severely impacts the health of human and animals. Taxifolin (TAX), a plant flavonoid isolated from yew, exerts protective effects on cardiac diseases. Nevertheless, whether DEHP could induce cardiomyocyte hypertrophy and its mechanism remains unclear. This study aimed to highlight the specific molecular mechanisms of DEHP-induced cardiomyocyte hypertrophy and the protective potential of TAX against it. Chicken primary cardiomyocytes were treated with DEHP (500 μM) and/or TAX (0.5 μM) for 24 h. The levels of glucose and adenosine triphosphate (ATP) were detected, and cardiac hypertrophy-related genes were validated by real-time quantitative PCR (qRT-PCR) and Western blot (WB) in vitro. The results showed that DEHP-induced cardiac hypertrophy was ameliorated by TAX, as indicated by the increased cardiomyocyte area and expression of atrial natriuretic peptide (ANP), natriuretic peptides A-like (BNP) and β-myosin heavy cardiac muscle (β-MHC). Furthermore, DEHP induced cardiac hypertrophy via the interleukin 6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in vitro. In addition, DEHP disrupted mitochondrial function and glycometabolism by activating the insulin-like growth factor 1 (IGF1)/phosphatidylinositol 3-kinase (PI3K) pathway and the peroxisome proliferator activated receptors (PPARs)/PPARG coactivator 1 alpha (PGC-1α) pathway to induce cardiac hypertrophy in vitro. Intriguingly, those DEHP-induced changes were obviously alleviated by TAX treatment. Taken together, cardiac hypertrophy was induced by DEHP via activating the IL-6/JAK/STAT3 signaling pathway, triggering glycometabolism disorder and mitochondrial dysfunction in vitro, can be ameliorated by TAX. Our findings may provide a feasible molecular mechanism for the treatment of cardiomyocyte hypertrophy induced by DEHP.
Mostrar más [+] Menos [-]Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice
2019
Wang, Chaoqun | Wei, Zhengkai | Han, Zhen | Wang, Jingjing | Zhang, Xu | Wang, Yanan | Liu, Quan | Yang, Zhengtao
Cadmium (Cd) is a ubiquitous toxic heavy metal derived mainly from industrial processes. In industrialized societies, individuals are exposed to a plethora of sources of Cd pollution. Cd can trigger serious diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) by the over-activating immune system. As an effector mechanism in innate immunity, neutrophil extracellular traps (NETs) not only play an important role in defending against infection but also lead to tissue damage. However, the role of NETs in Cd-induced lung damage process has not been previously studied. In this study, we aimed to investigate the potential effects of Cd-induced NETs on lung injury in vivo and further to clarify the molecular mechanisms of Cd-induced NETs formation. In vivo, Cd treatment destroyed the structural integrity of lung tissue and significantly increased the levels of NETs in the bronchoalveolar lavage fluid (BALF). The known NETs inhibitor DNase I ameliorated pathologic changes and significantly decreased levels of NETs in BALF, which suggesting the curial role of NETs in Cd-induced lung injury. Further investigation showed that Cd could significantly trigger NETs formation, which is composed of DNA backbone decorated with histones (H3) and neutrophils elastase (NE). The inhibitors of NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways significantly reduced the formation of NETs, and western blotting analysis also showed that Cd significantly increased the phosphorylation of p38 and ERK1/2 signaling pathways. Above results confirmed that NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways were related to Cd-induced NETs formation. In conclusion, NETs was involved in Cd-induced lung injury, and the mechanisms of Cd-induced NETs formation was via activating NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways, which might provide a new perspective in Cd-induced lung injury.
Mostrar más [+] Menos [-]Epigallocatechin-3-gallate attenuates microcystin-LR-induced apoptosis in human umbilical vein endothelial cells through activation of the NRF2/HO-1 pathway
2018
Shi, Jun | Zhang, Min | Zhang, Libin | Deng, Huipin
Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this study, we investigated whether the nuclear factor erythroid-like 2 (NRF2)/heme oxygenase-1 (HO-1) pathway, which regulates antioxidant transcriptional regulation of oxidative stress and apoptosis, is involved in this process. Mitochondrial membrane potential (MMP) and caspase-3/-9 activities were evaluated in HUVECs by JC-1 staining and colorimetric activity assay, and a DCFH-DA fluorescent probe assay was used to quantitate reactive oxygen species (ROS) generation. The effects of MC-LR, EGCG, NF2, and HO-1 on HUVEC apoptosis were explored by western blotting and small interfering RNA (siRNA) analyses. MC-LR treatment downregulated HUVEC mitochondrial membrane potential, and decreased levels of cytochrome c release and activated caspase-3/-9, ROS generation, consequently inducing HUVEC apoptosis. EGCG treatment attenuated MC-LR-mediated HUVEC oxidative stress and mitochondria-related apoptosis. EGCG induced NRF2/HO-1 expression and activation in MC-LR treated HUVECs, while downregulation of NRF2/HO-1 by specific siRNAs revealed that NRF2/HO-1 signaling was involved in EGCG attenuation of MC-LR-induced HUVEC apoptosis. Our findings indicate that EGCG treatment protects against MC-LR-mediated HUVEC apoptosis via activation of NRF2/HO-1 signaling.
Mostrar más [+] Menos [-]The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway
2018
Wang, Wuxiang | Zeng, Can | Feng, Yuqin | Zhou, Furong | Liao, Fen | Liu, Yuanfeng | Feng, Shaolong | Wang, Xinming
With the growing production and applications of silica nanoparticles (SiNPs), human exposure to these nanoparticles continues to increase. However, the possible hazards that SiNP exposure may pose to human cardiovascular system and the underlying mechanisms remain unclear. In the present study, the flow cytometry was employed to investigate the potential of four sizes (10, 25, 50, 100 nm) of SiNPs to induce the apoptosis of human umbilical vein endothelial cells (HUVECs) in culture. The apoptotic pathway was also explored through the determination of the protein expression and/or activation of p53, Bcl-2, Bax, caspases-9, -7, -3, and PARP by western blot. The results showed that all the four sizes of SiNPs could significantly elicit apoptosis in HUVECs at the tested concentrations (1, 5, 25 μg/mL), compared with the negative control (p < 0.05, p < 0.01). Moreover, the apoptotic rates were increased with the elevating levels and decreasing sizes of administrative SiNPs, showing both dose- and size-dependent effect relationships. Interestingly, the enhancing phosphorylation of p53 protein (Ser15), decreasing ratio of Bcl-2/Bax protein, and elevating activation of the downstream proteins, caspase-9, -7, -3 and PARP, were also observed with the decreasing sizes of tested SiNPs, indicating that the p53-caspase pathway is the main way of the SiNP-mediated apoptosis in HUVECs and that the size is an important parameter that determines the SiNPs' potential to induce cellular response.
Mostrar más [+] Menos [-]The detection of dioxin- and estrogen-like pollutants in marine and freshwater fishes cultivated in Pearl River Delta, China
2010
In this study we aimed to assess the dioxin- and estrogen-like activities of contaminants extracted from twenty species of freshwater and seawater fishes, using luciferase reporter assays. Transfected MCF7 cells were treated with sample extracts and luciferase activities were then measured at 24-h of post-treatment. The mean values of the detected dioxin- and estrogen-like activities in the freshwater fishes were 25.3 pg TEQ/g ww and 102.3 pM EEQ/g ww whereas in the seawater fishes, the values were 46.2 pg TEQ/g ww and 118.8 pM EEQ/g ww. Using sample-relevant dosage of estrogen, inductions of cell proliferation markers (i.e. retinoblastoma, cyclin D) and stimulations of cell growth were revealed by Western blotting, colony formation and BrdU uptake assays. A cotreatment with TCDD significantly reduced these effects. Using the sample extracts with different dioxin- and estrogen-like activities, similar observation was revealed. The data highlighted the mixture effect of food contaminants on human health.
Mostrar más [+] Menos [-]Prenatal exposure to triphenyl phosphate activated PPARγ in placental trophoblasts and impaired pregnancy outcomes
2022
Hong, Jiabin | Jiang, Mengzhu | Guo, Lihao | Lin, Juntong | Wang, Yao | Tang, Huanwen | Liu, Xiaoshan
The health risks of triphenyl phosphate (TPhP) have increased since its widespread application. Using placental trophoblast cell line JEG-3, we demonstrated that TPhP could induce endoplasmic reticulum stress (ERS) and cell apoptosis through PPARγ-mediated lipid metabolism. However, the developmental toxicity of TPhP through the placenta is not known. In this study, prenatal TPhP exposure to mice was investigated. Pregnant mice were orally exposed to TPhP (1 and 5 mg/kg) from embryonic day 0 (E0) until delivery. The results showed that TPhP could accumulate in placenta and impair pregnancy outcomes. After exposure, at E18, placental hormone chorionic gonadotrophin and testosterone levels were significantly decreased, but progesterone and estradiol levels were significantly increased, and placental angiogenesis was activated in the low-dose exposure group. While, in the high-dose exposure group, only estradiol levels were significantly increased. Different with the effect on hormone level or angiogenesis, TPhP significantly increased PPARγ and its regulated lipid transport proteins FABP, FATP, and CD36, and induced lipid accumulation in placental trophoblasts of both low- and high-exposure group. RNA-seq analysis of the placenta identified differentially expressed genes that were mainly involved in the ERS and MAPK signaling pathways. Western blot analysis verified that the protein levels related to ERS stress and apoptosis were significantly increased. To further confirm the role of PPARγ in TPhP mediated placental toxicity, pregnant mice were orally exposed to TPhP (1 mg/kg) or TPhP (1 mg/kg) + GW9662 (PPARγ inhibitor, 2 mg/kg) from E0 until delivery. The results showed that GW9662 could ameliorate the effect of TPhP on placental lipid accumulation, ERS and cell apoptosis, suggesting that PPARγ mediated the placental toxicity of TPhP. Overall, our results indicated that prenatal TPhP exposure impaired pregnancy outcomes, at least partly through PPARγ regulated function of trophoblast.
Mostrar más [+] Menos [-]