Refinar búsqueda
Resultados 1-10 de 323
Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries
2022
Zheng, Dongsheng | Yin, Guoyu | Liu, Min | Hou, Lijun | Yang, Yi | Liu, Xinran | Jiang, Yinghui | Chen, Cheng | Wu, Han
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Mostrar más [+] Menos [-]The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks
2022
Gao, Fang-Zhou | He, Liang-Ying | Hu, Li-Xin | Chen, Jun | Yang, Yuan-Yuan | He, Lu-Xi | Bai, Hong | Liu, You-Sheng | Zhao, Jian-Liang | Ying, Guang-Guo
Emission of antibiotics into riverine environments affects aquatic ecosystem functions and leads to the development of antibiotic resistance. Here, the profiles of forty-four antibiotics and eighteen antibiotic resistance genes (ARGs) were analyzed in two large rivers of the Pearl River System. In addition, the risks of ecotoxicity and resistance selection posed by the antibiotics were estimated. As compared to the reservoirs, the river sections close to the urban and livestock areas contained more antibiotics and ARGs. Seasonal variations of antibiotics (higher in the dry season) and relative ARGs (normalized by 16S rRNA gene, higher in the wet season) were found in the water, but not in the sediment. Sulfonamide resistance genes were the most prevalent ARGs in both river water and sediment. Antibiotic concentration was correlated with ARG abundance in the water, indicating that antibiotics play a critical role in ARG spread. In addition, oxytetracycline was the most abundant antibiotic with concentrations up to 2030 ng/L in the water and 2100 ng/g in the sediment respectively, and posed the highest risks for resistance selection. Oxytetracycline, tetracycline and sulfamethoxazole were expected to be more ecotoxicologically harmful to aquatic organisms, while ofloxacin, enrofloxacin, norfloxacin, chlortetracycline, oxytetracycline and tetracycline posed ecotoxicological risks in the sediment. The Nanliujiang river with intensive livestock activities was contaminated by antibiotics and ARGs and faced high ecotoxicological and resistance selection risks. Collectively, these findings reflect the impacts of anthropogenic activities on the spread of antibiotic resistance in large river basins.
Mostrar más [+] Menos [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain)
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl⁰ and K⁺ ions, which compete for adsorption sites with Tl⁺ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.
Mostrar más [+] Menos [-]Evaluation of origin-depended nitrogen input through atmospheric deposition and its effect on primary production in coastal areas of western Kyusyu, Japan
2021
Umezawa, Yu | Toyoshima, Kanae | Saitoh, Yu | Takeda, Shigenobu | Tamura, Kei | Tamaya, Chiaki | Yamaguchi, Akira | Yoshimizu, Chikage | Tayasu, Ichiro | Kawamoto, Kazuaki
Long term monitoring of atmospheric wet and dry depositions and associated nutrients fluxes was conducted on the coast of Japan facing the East China Sea continuously for 1 year and 2 months, with the origin of air mass investigated based on isotope analyses (Sr, Nd, and NO₃). During the same period, intensive observations of ocean conditions and the chemical composition of sinking particles collected using sediment traps were conducted to investigate the effects of atmospheric deposition-derived nutrients on phytoplankton blooms. Dry-deposition-derived nutrient inputs to the surface ocean were larger during autumn to spring than in summer due to the effect of continental air mass occasionally carrying Asian dust (yellow sand). However, these nutrients fluxes were limited (1.1–1.5 mg-N m⁻² day⁻¹ on average) and didn't appear to cause phytoplankton blooms through the year. Although average dissolved inorganic nitrogen (DIN) concentrations in rainwater were lower in oceanic air masses compared to continental air masses, wet-deposition-derived nutrient inputs to the surface ocean on rainy days during the summer (26.0 mg-N m⁻² day⁻¹ on average) were large due to higher precipitation from oceanic air masses. Wet-deposition-derived nutrients significantly increased nutrient concentrations in the surface ocean and seemed to cause phytoplankton blooms in the warm rainy season when nutrients in the surface were depleted due to increased stratification. The increase in phytoplankton biomass was reflected in increased particle sinking into the bottom layer, as well as changing chemical characteristics. The supply of flesh phytoplankton-derived labile organic matter into the bottom layer could be expected to promote rapid bacterial decomposition and contribute to the formation of hypoxic water masses in early summer when the ocean was strongly stratified. Atmospheric deposition-derived nutrients in East Asia will have important impacts on not only the oligotrophic outer ocean but also surrounding coastal areas in the warm rainy season.
Mostrar más [+] Menos [-]Assessment of extrinsic and intrinsic influences on water quality variation in subtropical agricultural multipond systems
2021
Chen, Wenjun | Nover, Daniel | Xia, Yongqiu | Zhang, Guangxin | Yen, Haw | He, Bin
Understanding wetland water quality dynamics and associated influencing factors is important to assess the numerous ecosystem services they provide. We present a combined self-organizing map (SOM) and linear mixed-effects model (LMEM) to relate water quality variation of multipond systems (MPSs, a common type of non-floodplain wetlands in agricultural regions of southern China) to their extrinsic and intrinsic influences for the first time. Across the 6 test MPSs with environmental gradients, ammonium nitrogen (NH₄⁺-N), total nitrogen (TN), and total phosphate (TP) almost always exceeded the surface water quality standard (2.0, 2.0, and 0.4 mg/L, respectively) in the up- and midstream ponds, while chlorophyll-a (Chl-a) exhibited hypertrophic state (≥28 μg/L) in the midstream ponds during the wet season. Synergistic influences explained 69±12% and 73±10% of the water quality variations in the wet and dry season, respectively. The adverse, extrinsic influences were generally 1.4, 6.9, 3.2, and 4.3 times of the beneficial, intrinsic influences for NH₄⁺-N, nitrate nitrogen (NO₃⁻-N), TP, and potassium permanganate index (CODMₙ), respectively, although the influencing direction and degree of forest and water area proportion were spatiotemporally unstable. While CODMₙ was primarily linked with rural residential areas in the midstream, higher TN and TP concentrations in the up- and midstream were associated with agricultural land, and NH₄⁺-N reflected a small but non-negligible source of free-range poultry feeding. Pond surface sediments exhibited consistent, adverse effects with amplifications during rainfall, while macrophyte biomass can reflect the biological uptake of CODMₙ and Chl-a, especially in the mid- and downstream during the wet season. Our study advances nonpoint source pollution (NPSP) research for small water bodies, explores nutrient “source-sink” dynamics, and provides a timely guide for rural planning and pond management. The modelling procedures and analytical results can inform refined assessment of similar NFWs elsewhere, where restoration efforts are required.
Mostrar más [+] Menos [-]Sequential fractionation and plant uptake of As, Cu, and Zn in a contaminated riparian wetland
2021
Zhang, Huijuan | Wang, Qi | Xu, Qijing | Xu, Wumei | Yang, Silin | Liu, Xue | Ma, Lena Q.
Sediment serves as a sink for metals, thus it is critical to assess its contamination and associated risk. A typical riparian wetland close to a Zn-smelting operation in karst areas in southwest China was investigated. Sediment and reed plant (Phragmites australis) samples from wet and dry seasons were analyzed for total As, Cu, and Zn concentrations. Metal pollution in the sediment was assessed based on geoaccumulation index (Igₑₒ). Further, metals in the sediment were fractionated into exchangeable, water and acid-soluble, reducible, oxidizable, and residual fractions based on the BCR sequential extraction. The results showed that the As, Cu, and Zn concentrations in the sediment were significantly higher than the background values (740–4081, 96–228, and 869–3331 vs. 10, 22, and 70 mg kg⁻¹). With the Igₑₒ being 10–17, the data indicate that the sediment was highly-polluted. While total As, Cu and Zn in the sediment increased from dry to wet season, their available concentrations decreased except Cu. With 62–94% of As, Cu, and Zn being in the residual fraction, metal availability in the sediment was low based on fractionation data. The data are consistent with low metal uptake by reed as their concentration ratios in plant roots to the sediment were 0.01–0.32. The results suggest that the riparian sediment was highly-polluted with As, Cu and Zn, but showing low metal availability and limited plant uptake.
Mostrar más [+] Menos [-]The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand
2021
Boongla, Yaowatat | Chanonmuang, Phuvasa | Hata, Mitsuhiko | Furuuchi, Masami | Phairuang, Worradorn
Atmospheric size-classified particles in sizes ranging from small to nanoparticles (PM₀.₁) are reported for Rangsit City in the Bangkok Metropolitan Region (BMR) of Thailand, for October 2019 (wet season) and January–February 2020 (dry season). The sampling involved the use of a PM₀.₁ cascade air sampler to determine the mass concentration. The PMs consisted of six stages including TSP–PM₁₀, PM₂.₅₋₁₀, PM₁.₀₋₂.₅, PM₀.₅₋₁.₀, PM₀.₅₋₁.₀ and PM₀.₁. Elemental carbon (EC) and organic carbon (OC) were evaluated by a carbon analyzer following the IMPROVE_TOR protocol. The average PM₀.₁ mass concentrations were found to be 13.47 ± 0.79 (wet season) and 18.88 ± 3.99 (dry season) μg/m³, respectively. The average OC/EC ratio for the rainy season was lower than that in the dry season. The char-EC/soot-EC ratios were consistently below 1 for the PM₀.₁ fraction in both seasons indicating that vehicular traffic appeared to be the main emission source. However, the influence of open biomass burning on fine and coarse PM particles on local air pollution was found to be an important issue during the wet season. In addition, long-range transport from other countries may also contribute to the carbon content in the Bangkok Metropolitan Region (BMR) atmosphere during the dry season. The higher secondary organic carbon to organic carbon (SOC/OC) ratio in the dry season is indicative of the contribution of secondary sources to the formation of PM, especially finer particles. A strong correlation between OC and EC in nanoparticles was found, indicating that they are derived from sources of constant emission, likely the diesel engines. Conversely, the OC and EC correlation for other size-specific PMs decreased during the dry season, indicating that these emission sources were more varied.
Mostrar más [+] Menos [-]Nurse sharks, space rockets and cargo ships: Metals and oxidative stress in a benthic, resident and large-sized mesopredator, Ginglymostoma cirratum
2021
Wosnick, Natascha | Chaves, Ana Paula | Leite, Renata Daldin | Nunes, Jorge Luiz Silva | Saint’Pierre, Tatiana Dillenburg | Willmer, Isabel Quental | Hauser-Davis, Rachel Ann
It is widely recognized that apex predators, such as large sharks with highly migratory behavior, are particularly vulnerable to pollution, mainly due to biomagnification processes. However, in highly impacted areas, mesopredator sharks with resident behavior can be as vulnerable as apex sharks. In this context, this study evaluated cadmium (Cd), mercury (Hg), lead (Pb), and rubidium (Rb) concentrations, as well as the potentially protective effects of selenium (Se) and the behavior of two non-enzymatic biomarkers, metallothionein (MT) and reduced glutathione (GSH), employing the Atlantic nurse shark Ginglymostoma cirratum as a study model and compared the results with other resident benthic sharks, as well as highly mobile apex sharks. Muscle tissue samples from 28 nurse sharks opportunistically sampled from the Brazilian Amazon Coast were analyzed. Lower metal concentrations were observed for Pb, Rb and Se in the rainy season, while statistically significant correlations between metals were observed only between Hg and Cd and Pb and Se. Molar ratio calculations indicate potential protective Se effects against Pb, but not against Cd and Hg. No associations between MT and the determined metals were observed, indicating a lack of detoxification processes via the MT detoxification route. The same was noted for GSH, indicating no induction of this primary cellular antioxidant defense. Our results indicate that benthic/mesopredator sharks with resident behavior are, in fact, as impacted as highly mobile apex predators, with the traditional detoxification pathways seemingly inefficient for the investigated species. Moreover, considering the studied population and other literature data, pollution should be listed as a threat to the species in future risk assessments.
Mostrar más [+] Menos [-]Assessment of hydrochemical backgrounds and threshold values of groundwater in a part of desert area, Rajasthan, India
2020
Rahman, Abdur | Tiwari, K.K. | Mondal, N.C.
Natural background levels (NBLs) and threshold values (TVs) are crucial parameters for identification and the quantification of groundwater pollution, and the evaluation of pollution control measures. The cumulative probability distribution technique was used for the evaluation of NBLs for 36 samples collected during two climate conditions in the part of the desert area from Rajasthan, India. The NBLs for Na⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻ and F⁻ ions were assessed and compared with the natural and anthropogenic processes. The TVs were also calculated for Na⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻ and F⁻ ions, and compared with the drinking limits of the Bureau of Indian Standards. Additionally, the pollution percentage (%) at the individual well was estimated and identified the polluted zones. Results indicate that most of the polluted areas were situated in the southern part, which was influenced by the natural and anthropogenic factors. The sodium concentrations above the TVs, in indicating the saline nature of water. Chloride threshold value above the drinking water limit was mainly observed in the dry season, related to intensive evaporation and industrial waste, which leads to groundwater quality degradation. The NO₃⁻ concentration (∼56% samples) above the TVs indicates extensive use of nitrate fertilizers and sewage effluent. The values of total dissolved solids (TDS) shows the suspicious scenario as about 84% of the samples in the dry period and about 89% in the wet season exceeding the drinking limit. Assessment of background concentrations and threshold values on regional and local scale assigns the basis for the identification of groundwater pollution, and helpful for better water quality guidelines to protecting of water resources.
Mostrar más [+] Menos [-]Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river
2020
Silva, Daniel C.V.R. | Queiroz, Lucas G. | Marassi, Rodrigo J. | Araújo, Cristiano V.M. | Bazzan, Thiago | Cardoso-Silva, Sheila | Silva, Gilmar C. | Müller, M. | Silva, Flávio T. | Montagner, Cassiana C. | Paiva, Teresa C.B. | Pompêo, Marcelo L.M.
Wastewater discharges from dairy industries can cause a range of harmful effects in aquatic ecosystems, including a decline in biodiversity due to species evasion. Therefore, it is important to know the purification potential of rivers for the removal of pollutants released in dairy wastewater (DWW). The hypothesis adopted in this work was that the release of DWW into stretches of the Ribeirão dos Pombos River (São Paulo State, Brazil) might trigger an avoidance response, resulting in fish migrating to other regions, with the response being greater when the self-cleaning potential of the river is smaller. Therefore, the goals of the present study were to: (i) investigate how land use and seasonality of the rainfall regime influence the quality of the water in different areas of the river (P1: river source; P2: urban region; P3: rural region); (ii) assess the potential of the river to purify DWW; and (iii) evaluate the potential toxicity and repellency of DWW to the freshwater fish Danio rerio, using acute toxicity (mortality) and non-forced avoidance tests, respectively. P1 was shown to be the most preserved area. The chemical composition of the river varied seasonally, with higher concentrations of Cl⁻ and SO₄²⁻ at P3 during the rainy period. The river purification potential for DWW was higher at P2, due to greater microbiological activity (associated with higher BOD). The DWW was more acutely toxic in water from P2. The avoidance response was strongly determined by the concentration of DWW, especially for water from P2. The high capacity for self-cleaning at P2 did not seem sufficient to maintain the stability of the ecosystem. Finally, the non-forced exposure system proved to be a suitable approach that can assist in predicting how contaminants may affect the spatial distributions of organisms.
Mostrar más [+] Menos [-]