Refinar búsqueda
Resultados 1-10 de 41
Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Mostrar más [+] Menos [-]Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings
2014
Zhang, Weiwei | Feng, Zhaozhong | Wang, Xiaoke | Niu, Junfeng
To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O3), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O3 (AA + 60 ppb O3, E-O3) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O3 exposure. Results indicated that E-O3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O3 risk on evergreen woody species.
Mostrar más [+] Menos [-]Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: A review
2007
Bussotti, F. | Strasser, R.J. | Schaub, M.
Visible ozone symptoms on leaves are expressions of physiological mechanisms to cope with oxidative stresses. Often, the symptoms consist of stippling, which corresponds to localized cell death (hypersensitive response, HR), separated from healthy cells by a layer of callose. The HR strategy tends to protect the healthy cells and in most cases the efficiency of chlorophyll to trap energy is not affected. In other cases, the efficiency of leaves to produce biomass declines and the plant loses its photosynthetic apparatus replacing it with a new, more efficient one. Another strategy consists of the production of pigments (anthocyanins), and leaves become reddish. In these cases, the most significant physiological manifestation consists of the enhanced dissipation of energy. These different behavior patterns are reflected in the initial events of photosynthetic activity, and can be monitored with techniques based on the direct fluorescence of chlorophyll a in photosystem II, applying the JIP-test. Analytical techniques based on the direct fluorescence of chlorophyll a, allow us to discriminate species-specific physiological behavior in relation to ozone air pollution.
Mostrar más [+] Menos [-]Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis
2018
You, Chengming | Wu, Fuzhong | Yang, Wanqin | Xu, Zhenfeng | Tan, Bo | Yue, Kai | Ni, Xiangyin
To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P-limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future.
Mostrar más [+] Menos [-]Responses of native broadleaved woody species to elevated ozone in subtropical China
2012
Zhang, Weiwei | Feng, Zhaozhong | Wang, Xiaoke | Niu, Junfeng
To assess ozone sensitivity of subtropical broadleaved tree species and explore possible underlying mechanisms, six evergreen and two deciduous native species were exposed to either charcoal-filtered air or elevated O₃ (E-O₃, ∼150ppb) for one growing season. Initial visible symptoms in deciduous species appeared much earlier than those in evergreen species. The species which first showed visible symptoms also had the largest reductions in biomass. E-O₃ induced significant decreases in photosynthesis rate, chlorophyll content and antioxidant capacity but a significant increase in malondialdehyde content in two deciduous species and two evergreen species (Cinnamomum camphora and Cyclobalanopsis glauca). Except C. glauca, however, E-O₃ had no significant effects on stomatal conductance (gₛ), total phenols and ascorbate contents. Difference in O₃ sensitivity among all species was strongly attributed to specific leaf mass rather than gₛ. It suggests that some subtropical tree species will be threatened by rising O₃ concentrations in the near future.
Mostrar más [+] Menos [-]An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements and n-alkanes
2014
Zhang, Shengyin | Li, Shuanglin | Dong, Heping | Zhao, Qingfang | Lu, Xinchuan | Shi, Ji’an
By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments.
Mostrar más [+] Menos [-]Physiological indicators and susceptibility of plants to acidifying atmospheric pollution: a multivariate approach
1995
Soares, A. | Ming, J.Y. | Pearson, J. (Department of Biology (Darwin Building), University College London, Gower Street, London WC1E 6BT (United Kingdom))
Characterization and mapping of enset-based home-garden agroforestry for sustainable landscape management of the Gurage socioecological landscape in Ethiopia
2022
Developing strategies that counter the ongoing homogenization trends of home-garden agroforestry systems is required to maintain diversity and sustainability. This study aimed to map and characterize traditional enset-based home-garden agroforestry for managing sustainability in the Gurage socioecological landscape in Ethiopia. We generated plots and land use land cover (LULC) spatial data from orthophotomosaic and collected household survey data of the field. Five home-garden types were identified explicitly through integrating the home-garden composition, functional structure, and agroecological zones. Most home-garden types had similar horizontal functional structures in which perennial crops were planted close to homesteads, annual crops grew in outer fields, and woodlots were located at the end of the parcel. Diverse woody species, crop varieties, and plot sizes were identified in individual household parcels, and these varied across the home-garden types. Enset-based home-garden agroforestry production has been declining in the Ethiopian landscape because of socioeconomic changes and a lack of technological inputs. These challenges may compromise the community’s food security with loss of the product diversity provided by the home-garden system. Thus, technological adoptions and scaling up of agroforestry practices according to the home-garden types are necessary for the continue provision of multiple contributions. This study demonstrated site-specific spatial characterization of the agroforestry systems by considering a holistic approach to reduce the local challenges and support the development of sustainable landscape management in an altering socioecological landscape.
Mostrar más [+] Menos [-]Effects of Heavy Metal-Polluted Soil (Pb, Zn, and Cd) on Seed Emergence, Seedling Growth, and Antioxidant Activity in Four Fabaceae Species
2022
Hachani, Chadlia | Lamhamedi, Mohammed S. | Abassi, Mejda | Sleimi, Noomene | Béjaoui, Zoubeir
Mine tailings can contaminate large areas of neighboring agricultural lands due to the dispersion of heavy metals, which may lead to reduction in soil fertility and toxicity in crops. The use of Fabaceae species as green manure to amend the soil and enhance the removal of heavy metals is a promising research approach. As part of a phytoremediation project for abandoned mining sites combining woody species and agricultural crops, this study aims to identify the most suitable species to be used. Thus, four Fabaceae species (Vicia faba, Cicer arietinum, Lens culinaris, and Medicago arborea) were subjected to muti-metal-contaminated soil containing high concentrations of Pb, Zn, and Cd and to control soil for 15 days. Then, the emergence rate, growth parameters, lipid peroxidation, proline and hydrogen peroxide (H₂O₂) concentrations, antioxidant enzyme activities (catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX)), and heavy metals accumulation were evaluated. Results showed that V. faba was the most tolerant. A relative sensitivity at the germination stage was recorded for all species with the exception of V. faba. Metallic stress had no significant effect on thiobarbituric acid reactive susbtances (TBARS) and electrolyte leakage rates for both C. arietinum and V. faba. The latter also showed the highest proline concentration and relatively low antioxidant enzyme activities. All species showed high Pb, Zn, and Cd root contents. V. faba had the lowest translocation factors of Pb and Zn and the lowest bioaccumulation factors of Zn and Cd, which underline its phytostabilizing potential and support its use as green manure for heavy metals contaminated soils amendement and rehabilitation.
Mostrar más [+] Menos [-]