Refinar búsqueda
Resultados 1-10 de 227
The possibility of removing heavy metals from waste waters by natural zeolites
1997
Pasalic, S. | Grbavcic, M. | Barbic, F. | Pljakic, E. (Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Beograd (Yugoslavia))
Over the last several years, the investigations of the natural zeolites application in the sorption processes have been intensified. Purification of waste waters in order to remove lead, cadmium, copper and other heavy metals, is one significant example of such application. In this paper, the investigations results on characteristics of the natural and chemically activated zeolites from the region of Vranje (Serbia, Yugoslavia), are presented. The experiments with zeolites were performed after determination of their physico-chemical characteristics. Adsorptive characteristics were investigated under laboratory conditions, in a liquid medium, depending on granulation and concentration of the heavy metals. As the obtained results show, these natural materials can be used to remove heavy metals from the waste waters.
Mostrar más [+] Menos [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Mostrar más [+] Menos [-]Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights
2022
Wang, Ping | Kong, Xiangke | Ma, Lisha | Wang, Shizhong | Zhang, Wei | Song Lê, | Li, Hui | Wang, Yanyan | Han, Zhantao
Iron-based materials have been widely investigated because of their high surface reactivity, which has shown potential for the remediation of metal(loid)s in groundwater. However, the disadvantages of structural stability and economic feasibility always limit their application in permeable reactive barrier (PRB) technology. In this study, zeolite-supported iron particles (Zeo-Fe) were synthesized by an innovative low-cost physical preparation method that is suitable for mass production. The removal efficiency and mechanism of typical metal(loid)s (Pb²⁺, Cd²⁺, Cr⁶⁺ and As³⁺) were subsequently investigated using various kinetic and equilibrium models and characterization methods. The results of scanning electron microscopy and energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) confirmed that zero valent iron (Fe⁰) and oxidation product (Fe₃O₄) were successfully loaded and efficiently dispersed on zeolite. The synthesized Zeo-Fe exhibited excellent adsorption and redox capacities for the cations Pb²⁺, Cd²⁺ and anions Cr⁶⁺, As³⁺. The increase in the pH resulting from Fe⁰ corrosion also enhanced the precipitation of Fe-metal(loid)s. The maximum removal capacity for Pb²⁺, Cd²⁺, Cr⁶⁺ and As³⁺ was up to 70.00, 9.12, 2.35 and 0.36 mg/g, respectively. The removal processes were well described by the pseudo-second-order kinetic model for Pb²⁺ and Cd²⁺, Lagergren pseudo first-order kinetics model for As³⁺ and double phase first order kinetics model l for Cr⁶⁺. Cr⁶⁺ was rapidly reduced to Cr³⁺ by the Fe⁰ stabilized on Zeo-Fe, and the oxidation of As³⁺ to As⁵⁺ was attributed to the Fe⁰/Fe²⁺ oxidation process at the interface over time, which was further demonstrated by the mineral phase and element valence analyses of reacted Zeo-Fe. The removal mechanism for metal(loid)s was a combination of physical and chemical processes, including adsorption, co-precipitation and reduction-oxidation. Conclusively, Zeo-Fe has been shown to have potential as an effective and economical material for removing various metal(loid)s used in PRB.
Mostrar más [+] Menos [-]Effect of algae on phosphorus immobilization by lanthanum-modified zeolite
2021
Li, Xiaodi | Zhang, Zhiyong | Xie, Qiang | Wu, Deyi
Phosphorus-inactivating agents (PIAs) as geoengineering tools in lakes have been investigated extensively, but PIA resuspension in the photic layer occurs frequently in shallow lakes and little is known about the influence of algae on PIA performance. Our results proved that algae increased the dissolved oxygen, pH and dissolved organic carbon concentration substantially. In the absence of sediment, lanthanum modified zeolite (LMZ) as a representative PIA and algae could deplete dissolved inorganic phosphorus (DIP) from water but the former was faster than the latter. When LMZ and algae coexisted, the amount of phosphorus that was captured by LMZ was 3.1 times greater than that taken up by algae. An increase in pH or dissolved organic carbon increased the zero-equilibrium phosphorus concentration (EPC₀) of the sediment but LMZ addition could lower the EPC₀ and reduce the risk of phosphorus release during the algal blooming season. In the presence of sediment, LMZ reduced the DIP concentration more rapidly and yielded a lower final DIP concentration compared with algae. In conclusion, the influence of algae on the performance of LMZ by (i) taking up DIP to reduce the availability of DIP and convert DIP into a releasable phosphorus form and (ii) increasing the pH and dissolved organic carbon concentration to hinder the adsorption ability of DIP were recognized. The LMZ performed well, even in the presence of algae.
Mostrar más [+] Menos [-]Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis
2021
Lee, Seul Bee | Lee, Jechan | Tsang, Yiu Fai | Kim, Young-Min | Jae, Jungho | Jung, Sang-Chul | Park, Young-Kwon
In this study, wasted mask is chosen as a pyrolysis feedstock whose generation has incredibly increased these days due to COVID-19. We suggest a way to produce value-added chemicals (e.g., aromatic compounds) from the mask with high amounts through catalytic fast pyrolysis (CFP). To this end, the effects of zeolite catalyst properties on the upgradation efficiency of pyrolytic products produced from pyrolysis of wasted mask were investigated. The compositions and yields of pyrolytic gases and oils were characterized as functions of pyrolysis temperature and the type of zeolite catalyst (HBeta, HY, and HZSM-5), including the mesoporous catalyst of Al-MCM-41. The mask was pyrolyzed in a fixed bed reactor, and the pyrolysis gases evolved in the reactor was routed to a secondary reactor inside which the zeolite catalyst was loaded. It was chosen 550 °C as the CFP temperature to compare the catalyst performance for the production of benzene, toluene, ethylbenzene, and xylene (BTEX) because this temperature gave the highest oil yield (80.7 wt%) during the non-catalytic pyrolysis process. The large pore zeolite group of HBeta and HY led to 134% and 67% higher BTEX concentrations than HZSM-5, respectively, likely because they had larger pores, higher surface areas, and higher acid site density than the HZSM-5. This is the first report of the effect of zeolite characteristics on BTEX production via CFP.
Mostrar más [+] Menos [-]Reduction of nitrate using biochar synthesized by Co-Pyrolyzing sawdust and iron oxide
2021
Han, Eun-Yeong | Kim, Bo-Kyong | Kim, Hye-Bin | Kim, Jong-Gook | Lee, Jae-Young | Baek, Kitae
Nitrate is the most common contaminant in groundwater in Korea, as well as across the world. Reduction of nitrate to ammonia is one of the options available to remediate groundwater. In this study, nitrate in groundwater was removed using a zero-valent iron (ZVI) containing biochar synthesized by co-pyrolyzing iron oxide and sawdust biomass. Among the various biogases generated during the pyrolysis of biomass, CO and H₂ act as reducing agents to transform iron oxides to ZVI. Approximately 71% of nitrate was reduced to ammonium by ZVI-biochar at initial pH 2.0, and the reduction decreased sharply by the increase in pH. The mass of nitrate-N decreased is exactly same with the mass of ammonia-N formed. However, ammonium remained in the aqueous phase after reduction by ZVI-biochar, and the total nitrogen was not lowered. Acid-washed zeolite adsorbed most ammonium reduced by the ZVI-biochar and maintained the pH to acidic condition to facilitate the reduction of nitrate. The results of this study imply that nitrate-contaminated groundwater can be properly treated within the guidelines of water quality by synthesized ZVI-containing biochar.
Mostrar más [+] Menos [-]Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil
2020
Hamid, Yasir | Tang, Lin | Hussain, Bilal | ʻUs̲mān, Muḥammad | Gurajala, Hanumanth Kumar | Rashid, Muhammad Saqib | He, Zhenli | Yang, Xiaoe
Present study reports the laboratory and field scale application of different organic and inorganic amendments to immobilize cadmium (Cd) and lead (Pb) in a co-contaminated alluvial paddy soil. For that purpose, lime, biochar, Fe-biochar and two composite amendments (CA) composed of biochar, lime, sepiolite and zeolite (CA1: composite amendment 1) and manure, lime and sepiolite (CA2: composite amendment 2) were firstly tested in an incubation experiment to ameliorate Cd and Pb co-contaminated alluvial soil. It was observed that liming and CA2 elevated the soil pH and reduced DTPA extractable Cd and Pb in the incubated soil leading to higher metal immobilization. Therefore, efficiency of lime and CA2 was further investigated in field conditions with mid rice as the test crop to evaluate field scale immobilization and precise application rate for the tested soil type. DTPA and CaCl₂ extractable Cd (46 and 51%) and Pb (68 and 70%) in field soil were decreased with applied treatments. Speciation of Cd and Pb also promoted conversion of metal exchangeable contents to less-available forms. Activated functional groups on amendments’ surface (_OH bonding, C_O and CO, -O-H, Si–O–Si, carboxylic and ester groups) sequestered metals by precipitation, adsorption, ion exchange or electro static attributes. Application of lime at 2400 kg/acre (T4) and CA2 at 1200 kg/acre was more effective in reducing rice shoot and grains metal contents. Moreover, obtained results in terms of pH, extractable content, speciation and yield, and microanalysis of amendments highlights the remarkable efficiency of lime and composite amendment to sorb Cd and Pb providing the key evidence of these amendments for metals immobilization and environmental remediation. Considering these results, lime and CA2 are potential amendments for co-contaminated rice field especially in context of alluvial soil.
Mostrar más [+] Menos [-]Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater
2019
Zhao, Min | Wang, Sen | Wang, Hongsheng | Qin, Peirui | Yang, Dongjiang | Sun, Yuanyuan | Kong, Fanlong
Constructed wetlands are an environmentally friendly and economically efficient sewage treatment technology, with fillers playing an important role in treatment processes. However, traditional wetland fillers (e.g. zeolite) are known to be imperfect because of their low adsorption capacity. In this paper, the adsorbent sodium titanate nano fillers (T3-F) was synthesized as an alternative to traditional filler with sodium titanate nanofibers (T3) as the raw material, epoxy adhesive as the adhesive agent and NH₄HCO₃ as the pore-making agent. The properties of T3-F were characterized by powder X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), porosity. The effect of different parameters such as pH, co-existing ions, contact time, initial metal ion concentrations and temperature was investigated for heavy metal adsorption. The results showed that the adsorption of heavy metal by T3-F followed the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacities for Cu²⁺, Pb²⁺, Zn²⁺, Cd²⁺ were about 1.5–1.98 mmol/g, which were 4–5 times that of zeolite, the traditional commonly used filler. Moreover, T3-F could entrap toxic ions irreversibly and maintain structural stability in the adsorption process, which solved the issue of secondary pollution. In the presence of competing ions, the adsorption efficiency for Pb²⁺ was not reduced significantly. Adsorption was strongest at high pH. From the results and characterization, an adsorption mechanism was suggested. This study lays a foundation for the practical application of T3-F as a constructed wetland filler in the future.
Mostrar más [+] Menos [-]Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies
2019
Li, Xiaodi | Xie, Qiang | Chen, Shouhui | Xing, Mingchao | Guan, Tong | Wu, Deyi
Release of phosphorus (P) from sediment to overlying water has to be dealt with to address algal blooms in eutrophic lakes. In this study, the sediment from the Lake Taihu was amended with lanthanum modified zeolite (LMZ) to reduce P release under different pH, temperature and anaerobic conditions. LMZ performed well, to decreasing P concentration in Lake Taihu water in the presence of sediment. The EPC₀ value, the critical P concentration at which there was neither P adsorption nor P release, was lowered by adding LMZ, suggesting that amendment with LMZ could diminish the risk of P release from the sediment. From the Langmuir isotherm model, the adsorption capacity of phosphate by LMZ was estimated to be 64.1 mgP/g. The LMZ-amended sediment had a higher content of stable P forms (HCl-P and Res-P) and a lower content of P forms with a high (NH₄Cl-P and BD-P) or medium-high (NaOH-P and Org-P) risk of release, when compared with the original sediment. The fractionation simulates conditions which release potentially mobile P which can then be simply re-bound to LMZ. At high pH (>9.0), anaerobic condition or high temperature promoted the liberation of P from sediment. However, P release could be greatly inhibited by LMZ. In addition, although Mn²⁺ and NH₄⁺ ions were released from sediment under the anaerobic condition, the release could also be hindered by adding LMZ. LMZ is a promising P inactivation agent to manage eutrophication in the sediment of Lake Taihu.
Mostrar más [+] Menos [-]Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure
2017
Zhou, Wenjun | Ren, Lingwei | Zhu, Lizhong
Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd2+) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R2 > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd2+, in particular zeolite, and the percentage decreases for Cd2+ sorption increased with increasing concentrations of Cd2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd2+, however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd2+ sorption. The adsorbed form was found to inhibit Cd2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils.
Mostrar más [+] Menos [-]