Refinar búsqueda
Resultados 1011-1020 de 5,098
Levels and risk assessment of hydrocarbons and organochlorines in aerosols from a North African coastal city (Bizerte, Tunisia)
2018
Barhoumi, Badreddine | Castro-Jiménez, Javier | Guigue, Catherine | Goutx, Madeleine | Sempéré, Richard | Derouiche, Abdelkader | Achour, Amani | Touil, Soufiane | Driss, Mohamed Ridha | Tedetti, Marc
The aim of this study was to assess, for the first time, the concentrations, sources, dry deposition and human health risks of polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in total suspended particle (TSP) samples collected in Bizerte city, Tunisia (North Africa), during one year (March 2015–January 2016). Concentrations of PAHs, AHs, PCBs and OCPs ranged 0.5–17.8 ng m−3, 6.7–126.5 ng m−3, 0.3–11 pg m−3 and 0.2–3.6 pg m−3, respectively, with higher levels of all contaminants measured in winter. A combined analysis revealed AHs originating from both biogenic and petrogenic sources, while diesel vehicle emissions were identified as dominant sources for PAHs. PCB potential sources included electronic, iron, cement, lubricant factories located within or outside Bizerte city. The dominant OCP congeners were p,p′-DDT and p,p′-DDE, reflecting a current or past use in agriculture. Health risk assessment showed that the lifetime excess cancer risk from exposure to airborne BaP was negligible in Bizerte, except in winter, where a potential risk to the local population may occur.
Mostrar más [+] Menos [-]Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: Implications for safe food production
2018
Hu, Wenyou | Huang, Biao | Borggaard, Ole K. | Ye, Mao | Tian, Kang | Zhang, Haidong | Holm, Peter E.
Greenhouse vegetable production (GVP) is the major type of vegetable production in China. However, dietary exposure of heavy metals through vegetable consumption has been identified as a potential risk to human health. To ensure safety of vegetables, soil threshold values (STVs) of cadmium (Cd) in GVP systems were assessed based on analysis of soil-vegetable Cd contents in relation to human health risk. Contents of Cd were determined in 324 sampled soil-vegetable pairs from five GVP systems in three Chinese provinces. Soil Cd contents ranged from 0.07 to 1.32 mg kg−1, with 17.9% of sampled soils exceeding current Chinese threshold values. Vegetable Cd contents ranged from 0.0003 to 0.546 mg kg−1, with 8.6% exceeding permissible maxima. Vegetable type and soil pH significantly affected Cd transfer from soil to vegetable with lower transfer at neutral (6.5 < pH ≤ 7.5) to alkaline (pH > 7.5) soils and uptake decreasing in the order: Leafy > rootstalk > fruit. Consequently, both soil pH and vegetable type should be taken into consideration as suggested when revising current STVs for Cd in GVP systems in order to capture the health risk correctly and ensure safe vegetable consumption.
Mostrar más [+] Menos [-]Transplacental transfer characteristics of organochlorine pesticides in paired maternal and cord sera, and placentas and possible influencing factors
2018
Zhang, Xiaolan | Wu, Xia | Lei, Bingli | Jing, Ye | Jiang, Zi'an | Zhang, Xinyu | Fang, Xiangming | Yu, Yingxin
Organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethane (DDT) and its metabolites [dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane], hexachlorocyclohexanes (HCHs), and hexachlorobenzene (HCB), are widely detected in humans despite the considerable decline in environmental concentrations. To understand the placental transfer of OCPs and the possible maternal influence on them, we measured the concentrations of DDTs, HCHs, and HCB in 102 paired samples of maternal and cord sera, and placentas collected in Shanghai, China. The median concentrations of DDTs and HCHs were the highest in maternal sera (601, 188 ng g⁻¹ lipid), followed by umbilical cord sera (389, 131 ng g⁻¹ lipid), and placentas (65, 37 ng g⁻¹ lipid). 4,4′-DDE, β-HCH, and HCB were the predominant contaminants in the three matrices. The ubiquitous existence of OCPs, and the significant concentration relationships of DDTs, HCHs, and OCPs in the three matrices suggested placental transfer from mother to fetus. The lipid-based concentration ratios of 4,4′-DDE, β-HCH, and HCB in umbilical cord serum to those in maternal serum (F/M), and ratios of placenta to maternal serum (P/M) ranged from 0.66 to 1.01, and 0.12 to 0.25, respectively. Maternal variables affected the levels of fetal contamination. For primiparous women, significant correlations between maternal age and maternal HCHs, and between pre-pregnancy body mass index (BMI) and maternal HCHs were found. The negative effect of parity, and the positive effect of food consumption on maternal OCP concentrations were also observed, although there were no significant differences. The possible influence of parity on F/M and P/M of 4,4′-DDE suggested borderline significant differences between primiparous and multiparous women. Also, slight group differences were observed between elder and younger women, and between overweight and normal/underweight women. Parity seems to have a potential influence on transfer ratios of some OCP pollutants.
Mostrar más [+] Menos [-]A simple slash-and-char system to mitigate climate change and environmental pollution
2018
Liang, Jie-Liang | Zhou, Wen-hua | Gao, Shao-ming | Yu, Wan-peng | Shu, Wen-sheng | Li, Jin-tian
Agriculture-based climate change mitigation may occur through enhancing the carbon sink or through reducing greenhouse gases (GHGs) emissions from agricultural residue treatment, as open burning of agricultural residues produces millions of tons of GHGs and air pollutants annually worldwide. Charring slashed biomass, termed as slash-and-char, has been considered as a promising alternative to open burning in dealing with agricultural residues such as rice straw. Previous studies, however, focused on relatively sophisticated slash-and-char systems, which could not be practiced easily by smallholder farmers in developing countries. Here we introduce a simple slash-and-char system to mitigate the environmental problems associated with open burning of rice straw. This system could convert 30.7% of the initial carbon in rice straw into biochar, much higher than that retained in the ash generated by open burning (3.95%). It could also cut GHGs, particulate matters and polycyclic aromatic hydrocarbons (PAHs) emissions by 26.9%, 99.0% and 99.4%, respectively. If open burning of rice straw was replaced by the slash-and-char, the annual emissions of GHGs, particulate matters and PAHs in China would decrease by at least 15.4 Tg, 1.51 Tg and 1.27 Gg, correspondingly. This decrease is nearly twice the size of China's estimated forest C sink (8.81 Tg).
Mostrar más [+] Menos [-]Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation
2018
Kong, Lingjun | Zhang, Huimin | Ji, Wei | Shih, Kaimin | Su, Minhua | Diao, Zenghui | Xu, Ruimei | Hou, Li'an | Song, Gang | Chen, Diyun
Increased generation of shrimp shell from exploitation of krill results in emerging biowaste pollution, in addition, uranium pollution has drawn public concern due to the rapid development of nuclear power, uranium mining, and nuclear fuel processing. In this study, krill shells were recovered and used as a potential natural biosorbent for uranium immobilization, thereby enabling both uranium decontamination and krill shell reutilization. Interaction of uranium with krill shell surface and their transformation were investigated by using batch sorption experiments, scanning electron microscopy, and transmission electron microscopy. Krill shell had high uranium sorption ability. Uranium was transformed into a nano-scale precipitate. The mapping of phosphorus and uranium was related to the nano-scale precipitate, indicating that sorption of uranium was dependent on phosphorus. Surface chemisorption between phosphate in krill shell and uranium as well as the formation of the nano-scale precipitate were interpreted as the mechanism of uranium immobilization. Thus, natural krill shell waste has potential for extensive use as a promising and cost-effective sorbent for uranium immobilization and krill shell reutilization.
Mostrar más [+] Menos [-]Insight into mechanism of aged biochar for adsorption of PAEs: Reciprocal effects of ageing and coexisting Cd2+
2018
Jing, Fanqi | Sohi, Saran P. | Liu, Yuyan | Chen, Jiawei
Biomass derived biochar is a stable carbon-rich product with potential for soil amendment. Introduced into the natural environment, biochar will naturally experience ‘ageing’ processes that are liable to change its physicochemical properties and the mobility of sorbed pollutants over the longer term. To elucidate the reciprocal effects of biochar ageing and heavy metal adsorption on the affinity of biochar for organic pollutants, we systematically assessed the adsorption of diethyl phthalate (DEP), representative of phthalic acid esters (PAEs), to fresh and aged biochars with and without coexistence of Cd²⁺. Long-term oxidative ageing was simulated using 5% H₂O₂ and applied to biochar samples made from corn cob, maize straw and wheat straw made by pyrolysis at both 450 °C and 650 °C. Our results showed that biochar made at lower temperature (450 °C) and from straw exhibited the higher adsorption capacity, owing to their greater polarity and abundance of O-containing functional groups. The adsorption of DEP onto fresh biochars was found to be driven by van der Waals force and H-bonding. Biochar made at the higher temperature (650 °C) displayed higher carbon stability than that produced at lower pyrolysis temperature. Oxidized biochar showed lower adsorption capacity than fresh biochar owing to the formation of three-dimensional water clusters on biochar surface, which blocked accessible sites and decreased the H-bonding effect between DEP and biochars. The coexistence of Cd²⁺ suppressed the sorption of DEP, via competition for the same electron-rich sites. This indicates that cation/π-π EDA interactions are the primary mechanism for PAE and Cd²⁺ stabilization on biochar. Our study sheds light on the mechanism of organic pollutant sorption by biochar, as well as the potential susceptibilities of this sorption to ageing effects in the natural environment.
Mostrar más [+] Menos [-]Metals content of recycled construction and demolition wood before and after implementation of best management practices
2018
Robey, Nicole M. | Solo-Gabriele, Helena M. | Jones, Athena S. | Marini, Juniper | Townsend, Timothy G.
A limitation to recycling wood from construction and demolition (C&D) waste is contamination of metals from the inadvertent inclusion of preservative treated wood, in particular wood treated with chromated copper arsenate (CCA) and newer copper-based formulations. To minimize contamination many regions have developed best management practices (BMPs) for separating treated from untreated wood. The objective of this study was to evaluate the fraction of preservative treated wood in recycled C&D wood after the implementation of BMPs, using Florida as a case study. Methods involved collecting recycled C&D wood samples from throughout the state, measuring metals concentrations (As, Cu, and Cr) in the samples to compute the fraction of recycled wood treated with waterborne wood preservatives, and comparing measurements with those taken prior to the formalization of BMPs. Metals concentrations were measured using two methods, one based on traditional laboratory digestion methods and another using a more rapid hand-held X-ray Fluorescence (XRF) device in the field. The proportion of waterborne preservative-treated wood in recycled wood products has reduced significantly in the intervening 20 years (from 6% to 2.9%), and the fraction of CCA-treated wood has been reduced even further, to 1.4%. The remaining fraction of waterborne preservative-treated wood is comprised of new formulations of copper-based preservatives. This suggests that restrictions from the wood preservation industry and best management practices implemented at recycling facilities have been effective in reducing heavy metal contamination from pressure treated lumber in recycled wood products.
Mostrar más [+] Menos [-]Importance of accurate trophic level determination by nitrogen isotope of amino acids for trophic magnification studies: A review
2018
Won, Eun-Ji | Choi, Bohyung | Hong, Seongjin | Khim, Jong Seong | Shin, Kyung-Hoon
During the last several decades, persistent organic pollutants and metals cause great concern for their toxicity in organisms as well as for their bioaccumulation and/or trophic transfer through the food chains in ecosystems. A large number of studies therefore have focused on the trophic levels of organisms to illustrate food web structure, as a critical component in the study of pollutant dynamics and biomagnification. The trends in biomagnification of pollutants in food webs indeed provide fundamental information about the properties and fates of pollutants in ecosystems. The trophic magnification supports the establishment of a reliable trophic structure, which can further aid the understanding of the transport and exposure routes of contaminants in accumulation and risk assessments. Recently, efforts to interpret the food web structure using carbon and nitrogen stable isotope ratios have contributed to better understanding of the fate of pollutants in the ecosystem. However, it is known that this isotope analysis of bulk ones has many weaknesses, particularly for uncertainties on the estimate of trophic levels and therefore of magnification factors for studied organisms, enough to support a regulatory interpretation. In this review, we collate studies that investigated biomagnification characteristics of pollutants in aquatic ecosystems, along with calculated trophic magnification factors. Moreover, we introduce a novel approach, compound-specific stable isotope analysis of nitrogen in amino acids, to establish reliable food web structures and accurate trophic levels for biomagnification studies. This method promises to provide sound results for interpreting the influence of the pollutant in organisms, along with their bioaccumulation and magnification characteristics, as well as that in ecosystem.
Mostrar más [+] Menos [-]Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation
2018
Zhao, Xiao | Du, Penghui | Cai, Zhengqing | Wang, Ting | Fu, Jie | Liu, Wen
Bisphenol A (BPA) is a widely concerned endocrine disrupting chemical and hard to be removed through conventional wastewater treatment processes. In this study, we developed a TiO2 decorated titanate nanotubes composite (TiO2/TNTs) and used for photocatalytic degradation of BPA. TEM and XRD analysis show that the TiO2/TNTs is a nano-composite of anatase and titanate, with anatase acting as the primary photocatalytic site and titanate as the skeleton. TiO2/TNTs exhibited excellent photocatalytic reactivity and its easy-settling property leaded to good reusability. After 5 reuse cycles, TiO2/TNTs also could photo-degrade 91.2% of BPA with a high rate constant (k1) of 0.039 min⁻¹, which was much better than TiO2 and TNTs. Higher pH facilitated photocatalysis due to more reactive oxygen species produced and less material aggregation. The presence of NaCl and CaCl2 showed negligible effects on BPA degradation, but NaHCO3 caused an inhibition effect resulting from consumption of ·OH. Humic acid inhibited degradation mainly due to blockage of the active sites of TiO2/TNTs. Degradation pathway was well interpreted through theoretical calculation. Hydroxyl radical played the dominate role in BPA photodegradation, and the atoms of BPA with high Fukui index based on density-functional theory (DFT) calculation are the radical easy-attacking (f⁰) sites. Considering the good photocatalytic reactivity, reusability, stability and settle property, TiO2/TNTs promises to be an efficient alternative for removal of organic compounds from wastewaters.
Mostrar más [+] Menos [-]Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils
2018
Zhou, Tong | Wu, Longhua | Luo, Yongming | Christie, Peter
Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000–53 μm POM size fractions had higher contents of C–H and C=O bonds, C–H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5–27.9% and 7.12–16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000–250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C–H and C=O bonds or C–H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250–53 μm POM size fractions were lower than those in 2000–250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils.
Mostrar más [+] Menos [-]