Refinar búsqueda
Resultados 1021-1030 de 4,309
Comparative toxicity and endocrine disruption potential of urban and rural atmospheric organic PM1 in JEG-3 human placental cells Texto completo
2017
van Drooge, Barend L. | Marqueño, Anna | Grimalt, Joan O. | Fernández, Pilar | Porte, Cinta
Outdoor ambient air particulate matter and air pollution are related to adverse effects on human health. The present study assesses the cytotoxicity and ability to disrupt aromatase activity of organic PM1 extracts from rural and urban areas at equivalent air volumes from 2 to 30 m3, in human placental JEG-3 cells. Samples were chemically analyzed for particle bounded organic compounds with endocrine disrupting potential, i.e. PAH, O-PAH, phthalate esters, but also for organic molecular tracer compounds for the emission source identification. Rural samples collected in winter were cytotoxic at the highest concentration tested and strongly inhibited aromatase activity in JEG-3 cells. No cytotoxicity was detected in summer samples from the rural site and the urban samples, while aromatase activity was moderately inhibited in these samples. In the urban area, the street site samples, collected close to intensive traffic, showed stronger inhibition of aromatase activity than the samples simultaneously collected at a roof site, 50 m above ground level. The cytotoxicity and endocrine disruption potential of the samples were linked to combustion products, i.e. PAH and O-PAH, especially from biomass burning in the rural site in winter.
Mostrar más [+] Menos [-]Environmental exposure to TiO2 nanomaterials incorporated in building material Texto completo
2017
Bossa, Nathan | Chaurand, Perrine | Levard, Clément | Borschneck, Daniel | Miche, Hélène | Vicente, Jérôme | Geantet, Christophe | Aguerre-Chariol, Olivier | Michel, F Marc | Rose, Jerome
Nanomaterials are increasingly being used to improve the properties and functions of common building materials. A new type of self-cleaning cement incorporating TiO2 nanomaterials (TiO2-NMs) with photocatalytic properties is now marketed. This promising cement might provide air pollution-reducing properties but its environmental impact must be validated. During cement use and aging, an altered surface layer is formed that exhibits increased porosity. The surface layer thickness alteration and porosity increase with the cement degradation rate. The hardened cement paste leaching behavior has been fully documented, but the fate of incorporated TiO2-NMs and their state during/after potential release is currently unknown. In this study, photocatalytic cement pastes with increasing initial porosity were leached at a lab-scale to produce a range of degradation rates concerning the altered layer porosity and thickness. No dissolved Ti was released during leaching, only particulate TiO2-NM release was detected. The extent of release from this batch test simulating accelerated worst-case scenario was limited and ranged from 18.7 ± 2.1 to 33.5 ± 5.1 mg of Ti/m2 of cement after 168 h of leaching. TiO2-NMs released into neutral aquatic media (simulate pH of surface water) were not associated or coated by cement minerals. The TiO2-NM release mechanism is suspected to start from freeing of TiO2-NMs in the altered layer pore network due to partial cement paste dissolution followed by diffusion into the bulk pore solution to the surface. The extent of TiO2-NM release was not solely related to the cement degradation rate.
Mostrar más [+] Menos [-]Assessment of chlorpyrifos toxic effects in zebrafish (Danio rerio) metabolism Texto completo
2017
Gómez-Canela, Cristian | Prats, Eva | Piña, Benjamí | Tauler, Romà
In this work the effect of chlorpyrifos exposure on metabolic profiles of zebrafish muscle was evaluated by liquid chromatography coupled to high resolution mass spectrometry. Different chemometric tools based on the selection of Regions of Interest and on Multivariate Curve-Resolution-Alternating Least Squares are proposed for the analysis of the complex data sets generated in the different exposure experiments. Analysis of Variance Simultaneous Component Analysis of changes on metabolite peak profile areas showed significant chlorpyrifos concentration and exposure time-dependent changes, clearly differentiating between exposed and non-exposed samples and between short (2 h) and long exposure times (6 h or 24 h). The changes observed in the concentrations of 50 muscle metabolites are indicative of induction of oxidative stress, of a general disruption of neurotransmitter metabolism, and of muscle exhaustion. These three effects are intimately related to the toxicity of chlorpyrifos.
Mostrar más [+] Menos [-]Exposure of juvenile turbot (Scophthalmus maximus) to silver nanoparticles and 17α-ethinylestradiol mixtures: Implications for contaminant uptake and plasma steroid hormone levels Texto completo
2017
Farkas, Júlia | Salaberria, Iurgi | Styrishave, Bjarne | Staňková, Radka | Ciesielski, Tomasz M. | Olsen, Anders J. | Posch, Wilfried | Flaten, Trond P. | Krøkje, Åse | Salvenmoser, Willi | Jenssen, Bjørn M.
Combined exposure to engineered nanoparticles (ENPs) and anthropogenic contaminants can lead to changes in bioavailability, uptake and thus effects of both groups of contaminants. In this study we investigated effects of single and combined exposures of silver (Ag) nanoparticles (AgNPs) and the synthetic hormone 17α-ethinylestradiol (EE2) on tissue uptake of both contaminants in juvenile turbot (Scophthalmus maximus). Silver uptake and tissue distribution (gills, liver, kidney, stomach, muscle and bile) were analyzed following a 14-day, 2-h daily pulsed exposure to AgNPs (2 μg L⁻¹ and 200 μg L⁻¹), Ag⁺ (50 μg L⁻¹), EE2 (50 ng L⁻¹) and AgNP + EE2 (2 or 200 μg L⁻¹+50 ng L⁻¹). Effects of the exposures on plasma vitellogenin (Vtg) levels, EE2 and steroid hormone concentrations were investigated. The AgNP and AgNP + EE2 exposures resulted in similar Ag concentrations in the tissues, indicating that combined exposure did not influence Ag uptake in tissues. The highest Ag concentrations were found in gills. For the Ag⁺ exposed fish, the highest Ag concentrations were measured in the liver. Our results show dissolution processes of AgNPs in seawater, indicating that the tissue concentrations of Ag may partly originate from ionic release. Plasma EE2 concentrations and Vtg induction were similar in fish exposed to the single contaminants and the mixed contaminants, indicating that the presence of AgNPs did not significantly alter EE2 uptake. Similarly, concentrations of most steroid hormones were not significantly altered due to exposures to the combined contaminants versus the single compound exposures. However, high concentrations of AgNPs in combination with EE2 caused a drop of estrone (E1) (female fish) and androstenedione (AN) (male and female fish) levels in plasma below quantification limits. Our results indicate that the interactive effects between AgNPs and EE2 are limited, with only high concentrations of AgNPs triggering synergistic effects on plasma steroid hormone concentrations in juvenile turbots.
Mostrar más [+] Menos [-]Decrease in the genotoxicity of metal-contaminated soils with biochar amendments Texto completo
2017
Rees, Frédéric | Dhyèvre, Adrien | Morel, Jean-Louis | Cotelle, Sylvie | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | French Lorraine Region ; European Regional Development Fund
Decrease in the genotoxicity of metal-contaminated soils with biochar amendments Texto completo
2017
Rees, Frédéric | Dhyèvre, Adrien | Morel, Jean-Louis | Cotelle, Sylvie | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | French Lorraine Region ; European Regional Development Fund
International audience | Biochar amendments, i.e., the solid product of biomass pyrolysis, reduce soil metal availability, which may lower the toxicity of metal-contaminated soils.A direct link between the decrease in soil metal availability and improved plant development is however often difficult to establish, as biochar may induce undesirable side effects on plant growth, e.g., a modification to plant nutrition. In order to investigate toxicity processes at a cellular level, roots of Vicia faba were exposed for 7 days to three metal-contaminated substrates and one control soil, amended with a 0 or 5% (w/w) addition of a wood-derived biochar.Exposure to pure biochar was also tested. Root tip cells were then observed to count the number of micronuclei as an estimation of DNA damage and the number of cells at mitosis stage. Results showed that biochar amendments led to a significant decrease in soil metal availability (Cd, Cu, Ni, Pb, and Zn) and to enhance root development on acidic substrates. The micronucleus frequency in root tip cells was positively correlated and the number of mitotic cells negatively, to the extractability of Zn in soils and to the concentration of Zn in secondary roots.Exposure to pure biochar caused a lower production of roots than most soil substrates, but led to the lowest number of observed micronuclei. In conclusion, biochar amendments can reduce the genotoxicity associated with the presence of metallic contaminants in soils, thereby potentially improving plant growth.
Mostrar más [+] Menos [-]Decrease in the genotoxicity of metal-contaminated soils with biochar amendments Texto completo
2017
Rees, Frédéric | Dhyèvre, Adrien | Morel, J. L. (Jean-Louis) | Cotelle, Sylvie
Biochar amendments, i.e., the solid product of biomass pyrolysis, reduce soil metal availability, which may lower the toxicity of metal-contaminated soils. A direct link between the decrease in soil metal availability and improved plant development is however often difficult to establish, as biochar may induce undesirable side effects on plant growth, e.g., a modification to plant nutrition. In order to investigate toxicity processes at a cellular level, roots of Vicia faba were exposed for 7 days to three metal-contaminated substrates and one control soil, amended with a 0 or 5% (w/w) addition of a wood-derived biochar. Exposure to pure biochar was also tested. Root tip cells were then observed to count the number of micronuclei as an estimation of DNA damage and the number of cells at mitosis stage. Results showed that biochar amendments led to a significant decrease in soil metal availability (Cd, Cu, Ni, Pb, and Zn) and to enhance root development on acidic substrates. The micronucleus frequency in root tip cells was positively correlated and the number of mitotic cells negatively, to the extractability of Zn in soils and to the concentration of Zn in secondary roots. Exposure to pure biochar caused a lower production of roots than most soil substrates, but led to the lowest number of observed micronuclei. In conclusion, biochar amendments can reduce the genotoxicity associated with the presence of metallic contaminants in soils, thereby potentially improving plant growth.
Mostrar más [+] Menos [-]Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens | Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: Comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials Texto completo
2017
Jacobs, Arnaud | Drouet, Thomas | Sterckeman, Thibault | Noret, Nausicaa | Fac Sci, Lab Ecol Vegetale & Biogeochim ; Université libre de Bruxelles (ULB) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Regional Ministry for the Environment, Brussels, BE
Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens | Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: Comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials Texto completo
2017
Jacobs, Arnaud | Drouet, Thomas | Sterckeman, Thibault | Noret, Nausicaa | Fac Sci, Lab Ecol Vegetale & Biogeochim ; Université libre de Bruxelles (ULB) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Regional Ministry for the Environment, Brussels, BE
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption.Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150–200, 400–500, and 400–700 μg g−1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha−1 was obtained with NMET populations on some plots. Compared to Ganges— the high Cd-accumulating ecotype from South of France often used in phytoextraction trials— NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture.Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils—with uptake values of up to 200 g Cd ha−1 and 47 kg Zn ha−1—and show the interest of selecting the adequate population according to the targeted metal.
Mostrar más [+] Menos [-]Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials Texto completo
2017
Jacobs, Arnaud | Drouet, Thomas | Sterckeman, Thibault | Noret, Nausicaa
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150–200, 400–500, and 400–700 μg g⁻¹ of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha⁻¹ was obtained with NMET populations on some plots. Compared to Ganges— the high Cd-accumulating ecotype from South of France often used in phytoextraction trials— NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils—with uptake values of up to 200 g Cd ha⁻¹ and 47 kg Zn ha⁻¹—and show the interest of selecting the adequate population according to the targeted metal.
Mostrar más [+] Menos [-]Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany Texto completo
2017
Watermann, B. T. | Löder, M. | Herlyn, M. | Daehne, B. | Thomsen, A. | Gall, K.
Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany Texto completo
2017
Watermann, B. T. | Löder, M. | Herlyn, M. | Daehne, B. | Thomsen, A. | Gall, K.
During biological effect monitoring studies of endocrine active compounds with the snail Assiminea grayana in 2007-2013, reproductive disorders including atresia, transformation of capsule/albumen glands into prostates in females and ovotestis, transformation of prostates to capsule/albumen glands, disruption of spermatogenesis, and calcification of tubules in males, were encountered in several years. The search of sources of endocrine active substances was first directed to antifouling biocides from paint particles and extended to leaching compounds from polymeric materials. In contrast to the reference sites, most of the observed disorders occurred at a station near harbors and dockyards polluted with residues from antifouling paints and polymeric materials. Beside of investigations about the potential ingestion of polymer particles by the snails, further investigations of compounds of polymeric materials with endocrine potential should follow.
Mostrar más [+] Menos [-]Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany Texto completo
2017
Watermann, B. T. | Löder, M. | Herlyn, M. | Daehne, B. | Thomsen, A. | Gall, K
During biological effect monitoring studies of endocrine active compounds with the snail Assiminea grayana in 2007–2013, reproductive disorders including atresia, transformation of capsule/albumen glands into prostates in females and ovotestis, transformation of prostates to capsule/albumen glands, disruption of spermatogenesis, and calcification of tubules in males, were encountered in several years. The search of sources of endocrine active substances was first directed to antifouling biocides from paint particles and extended to leaching compounds from polymeric materials. In contrast to the reference sites, most of the observed disorders occurred at a station near harbors and dockyards polluted with residues from antifouling paints and polymeric materials. Beside of investigations about the potential ingestion of polymer particles by the snails, further investigations of compounds of polymeric materials with endocrine potential should follow.
Mostrar más [+] Menos [-]Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France Texto completo
2017
Bertucci, Anthony | Pierron, Fabien | Thébault, Julien | Klopp, Christophe | Bellec, Julie | Gonzalez, Patrice | Baudrimont, Magalie | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Génome et Transcriptome - Plateforme Génomique (GeT-PlaGe) ; Plateforme Génome & Transcriptome (GET) ; Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France Texto completo
2017
Bertucci, Anthony | Pierron, Fabien | Thébault, Julien | Klopp, Christophe | Bellec, Julie | Gonzalez, Patrice | Baudrimont, Magalie | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Génome et Transcriptome - Plateforme Génomique (GeT-PlaGe) ; Plateforme Génome & Transcriptome (GET) ; Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
WOS:000417545800022 | International audience | The freshwater pearl mussel Margaritifera margaritifera is one of the most threatened freshwater bivalves worldwide. In this study, we aimed (i) to study the processes by which water quality might affect freshwater mussels in situ and (ii) to provide insights into the ecotoxicological significance of water pollution to natural populations in order to provide necessary information to enhance conservation strategies. M. margaritifera specimens were sampled in two close sites located upstream or downstream from an illegal dumping site. The renal transcriptome of these animals was assembled and gene transcription determined by RNA-seq. Correlations between transcription levels of each single transcript and the bioaccumulation of nine trace metals, age (estimated by sclerochronology), and condition index were determined in order to identify genes likely to respond to a specific factor. Amongst the studied metals, Cr, Zn, Cd, and Ni were the main factors correlated with transcription levels, with effects on translation, apoptosis, immune response, response to stimulus, and transport pathways. However, the main factor explaining changes in gene transcription appeared to be the age of individuals with a negative correlation with the transcription of retrotransposon-related genes. To investigate this effect further, mussels were classified into three age classes. In young, middle-aged and old animals, transcription levels were mainly explained by Cu, Zn and age, respectively. This suggests differences in the molecular responses of this species to metals during its lifetime that must be better assessed in future ecotoxicology studies.
Mostrar más [+] Menos [-]Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France Texto completo
2017
Bertucci, Anthony | Pierron, Fabien | Thébault, Julien | Klopp, Christophe | Bellec, Julie | Gonzalez, Patrice | Baudrimont, Magalie
The freshwater pearl mussel Margaritifera margaritifera is one of the most threatened freshwater bivalves worldwide. In this study, we aimed (i) to study the processes by which water quality might affect freshwater mussels in situ and (ii) to provide insights into the ecotoxicological significance of water pollution to natural populations in order to provide necessary information to enhance conservation strategies. M. margaritifera specimens were sampled in two close sites located upstream or downstream from an illegal dumping site. The renal transcriptome of these animals was assembled and gene transcription determined by RNA-seq. Correlations between transcription levels of each single transcript and the bioaccumulation of nine trace metals, age (estimated by sclerochronology), and condition index were determined in order to identify genes likely to respond to a specific factor. Amongst the studied metals, Cr, Zn, Cd, and Ni were the main factors correlated with transcription levels, with effects on translation, apoptosis, immune response, response to stimulus, and transport pathways. However, the main factor explaining changes in gene transcription appeared to be the age of individuals with a negative correlation with the transcription of retrotransposon-related genes. To investigate this effect further, mussels were classified into three age classes. In young, middle-aged and old animals, transcription levels were mainly explained by Cu, Zn and age, respectively. This suggests differences in the molecular responses of this species to metals during its lifetime that must be better assessed in future ecotoxicology studies.
Mostrar más [+] Menos [-]Fate and effect of pollutants in rivers: from analysis to modeling Texto completo
2017
Montuelle, Bernard | Graillot, Didier | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Institut National de la Recherche Agronomique (INRA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | École des Mines de Saint-Étienne (Mines Saint-Étienne MSE) ; Institut Mines-Télécom [Paris] (IMT)
Fate and effect of pollutants in rivers: from analysis to modeling
Mostrar más [+] Menos [-]Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizospherebacterial communities Texto completo
2017
Pham, Hoang Nam | Michalet, Serge | Bodilis, Josselin | Nguyen, Tien Dat | Nguyen, Thi Kieu Oanh | Le, Thi Phuong Quynh | Haddad, Mohamed | Nazaret, Sylvie | Dijoux-Franca, Marie-Geneviève | Vietnam Academy of Science and Technology (VAST) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | PMAB Department ; University of Science and Technology of Hanoi (USTH) | Pharmacochimie et Biologie pour le Développement (PHARMA-DEV) ; Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | UMR 5557 CNRS Microbial Ecology; Vietnam Ministry of Education and Training; University of Sciences and Technologies of Hanoi; "Environmental resistance and bacterial efflux"
Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizospherebacterial communities Texto completo
2017
Pham, Hoang Nam | Michalet, Serge | Bodilis, Josselin | Nguyen, Tien Dat | Nguyen, Thi Kieu Oanh | Le, Thi Phuong Quynh | Haddad, Mohamed | Nazaret, Sylvie | Dijoux-Franca, Marie-Geneviève | Vietnam Academy of Science and Technology (VAST) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | PMAB Department ; University of Science and Technology of Hanoi (USTH) | Pharmacochimie et Biologie pour le Développement (PHARMA-DEV) ; Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | UMR 5557 CNRS Microbial Ecology; Vietnam Ministry of Education and Training; University of Sciences and Technologies of Hanoi; "Environmental resistance and bacterial efflux"
International audience | Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.
Mostrar más [+] Menos [-]Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities Texto completo
2017
Phạm, Hoàng Nam | Michalet, Serge | Bodillis, Josselin | Nguyễn, Tiến Đạt | Nguyen, Thi Kieu Oanh | Le, Thi Phuong Quynh | Haddad, Mohamed | Nazaret, Sylvie | Dijoux-Franca, Marie-Geneviève
Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata’s rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.
Mostrar más [+] Menos [-]