Refinar búsqueda
Resultados 1031-1040 de 6,473
The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments
2020
Zhang, Peng | Huang, Peng | Sun, Hongwen | Ma, Jianli | Li, Beixing
Microplastic (MP) pollution and its potential to concentrate and transport organic contaminants in environments have recently gained widespread attention. Compared to traditional nonpolar plastics such as polypropylene (PP) and polyethylene (PE), study about the environmental behavior of polyurethane (PT), polyuria (PU) and urea-formaldehyde resin (UF), which are typically used as shell materials for pesticide microcapsules and have polar structure is scarce. In the present study, we investigated the sorption capacities and binding mechanisms of PT, PU and UF for three polycyclic aromatic hydrocarbons (PAHs, naphthalene, phenanthrene (PHE), and pyrene) and two PHE derivates (ethylphenanthrene-2-carboxylate (2-CPHE) and 2-methylphenathrene (2-MPHE)) selected as the model compounds, and the effects of salinity and UV and/or H₂O₂ aging treatments on PHE sorption to MPs. The results showed that PT, PU and UF had negative surface charges, micron-scaled sizes and abundant polar functional groups containing O and N elements. PT, PU and UF could sorb PAHs efficiently with sorption coefficients (Kd) being in the range of 8.11 × 10³–9.53 × 10⁵ (L/Kg) and partitioning was the main sorption mechanism with polar interactions (H-boning and p/π-π EDA interactions) also contributing. The sorption capacity of the three MPs changed mainly depending on their glass transition temperatures (Tg). Furthermore, high salinity decreased the surface zeta-potential of the MPs and enhanced PHE sorption to MPs. In addition, aging treatments with UV and/or H₂O₂ markedly decreased the Tg of PT and enhanced its sorption capacity for PHE, while opposite results were obtained for PU. The findings on the sorption mechanisms of PAHs to agricultural MPs are useful for predicting the transport, fate and persistence of the co-existing HOCs in agricultural ecosystems and provide a scientific basis for the comprehensive risk assessment of agricultural MPs.
Mostrar más [+] Menos [-]Herbicide residues in sediments from Lake St Lucia (iSimangaliso World Heritage Site, South Africa) and its catchment areas: Occurrence and ecological risk assessment
2020
Tyohemba, Raymond Lubem | Pillay, Letitia | Humphries, Marc S.
The impact of agricultural pesticides on sensitive aquatic ecosystems is a matter of global concern. Although South Africa is the largest user of pesticides in sub-Saharan Africa, few studies have examined the toxicological threats posed by agricultural runoff, particularly to conservation areas of international importance. This study investigated the occurrence of 11 priority listed herbicides in sediments from Lake St Lucia, located on the east coast of South Africa. While characterised by exceptionally high levels of biodiversity, Lake St Lucia is affected by agricultural runoff primarily via inflow from two major rivers; the Mkhuze and Mfolozi. Sediment samples collected from Lake St Lucia and its two major fluvial inputs reveal widespread herbicide contamination of the aquatic environment. Residues were detected in the vast majority of samples analysed, with Mkhuze (27.3 ± 17 ng g⁻¹) and Mfolozi (25.6 ± 20 ng g⁻¹) sediments characterised by similar total herbicide levels, while lower concentrations were typically detected in Lake St Lucia (12.9 ± 12 ng g⁻¹). Overall, the most prominent residues detected included acetochlor (3.77 ± 1.3 ng g⁻¹), hexazinone (2.86 ± 1.4 ng g⁻¹) and metolachlor (10.1 ± 8.7 ng g⁻¹). Ecological assessment using Risk Quotients (RQs) showed that cumulative values for triazines and anilides/aniline herbicide classes presented low to medium risk for algae and aquatic invertebrate communities. Considering the biological importance of Lake St Lucia as a nursery for aquatic organisms, it is recommended that further research on the aquatic health of the system be undertaken. Additional monitoring and investigation into mitigation strategies is suggested, particularly as agricultural activities surrounding Lake St Lucia are likely to expand in the future.
Mostrar más [+] Menos [-]Per- and polyfluoroalkyl substances in Chinese and German river water – Point source- and country-specific fingerprints including unknown precursors
2020
Joerss, Hanna | Schramm, Thekla-Regine | Sun, Linting | Guo, Chao | Tang, Jianhui | Ebinghaus, Ralf
This study aimed at comparing source-specific fingerprints of per- and polyfluoroalkyl substances (PFASs) in river water from China and Germany, selected as countries with different histories of PFAS production. Samples were collected from up- and downstream of seven suspected point sources in autumn 2018. Amongst the 29 analyzed legacy and emerging PFASs, 24 were detected, with a sum ranging from 2.7 ng/L (Alz River) to 420,000 ng/L (Xiaoqing River). While mass flow estimates for the Xiaoqing River and Yangtze River (mean: 20 and 43 t/y, respectively) indicated ongoing high emissions of the legacy compound PFOA in China, its ether-based replacements HFPO-DA and DONA showed the highest contribution downstream of a German fluoropolymer manufacturing site (50% and 40% of ΣPFASs measured, respectively). In river water impacted by manufacturing sites for pharmaceutical and pesticide intermediates, the short-chain compound PFBS was the most prevalent substance in both countries. The German Ruhr River, receiving discharges from the electroplating industry, was characterized by the PFOS replacement 6:2 FTSA. Isomer profiling revealed a higher proportion of branched isomers in the Chinese Xi River and Xiaoqing River than in other rivers. This points to different synthesis routes and underlines the importance of differentiating between linear and branched isomers in risks assessments. Upon oxidative conversion in the total oxidizable precursor (TOP) assay, the increase of the short-chain compound PFBA was higher in German samples than in Chinese samples (88 ± 30% versus 12 ± 14%), suggesting the presence of a higher proportion of unknown precursors to PFBA in the German environment. Amongst the ether-based replacements, DONA and 6:2 Cl-PFESA were fully or partially degraded to non-targeted oxidation products, whereas HFPO-DA showed no degradation. This indicates that the inclusion of ether-based PFASs and their oxidation products in the TOP assay can help in capturing a larger amount of the unknown PFAS fraction.
Mostrar más [+] Menos [-]Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes
2020
Yang, Yuyin | Chen, Jianfei | Tong, Tianli | Xie, Shuguang | Liu, Yong
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
Mostrar más [+] Menos [-]Influence of microplastics on nutrients and metal concentrations in river sediments
2020
He, Beibei | Duodu, Godfred O. | Rintoul, Llew | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Microplastics pose threats to aquatic environments because they serve as hard-substrate for microbial community colonization and biofilm formation due to their long-life span and hydrophobic surface which can impact on aquatic ecosystems. However, the association between microplastics and other pollutants, particularly nutrients and metals in river sediments are largely unknown. In this study, microplastics abundance and hazard scores which are the risks arising from chemical compounds used for plastics manufacture, and the correlations between microplastics and the concentrations of total carbon (TC), total nitrogen (TN), total phosphorus (TP) and metals commonly present in the urban environment such as Al, As, Cr, Co, Cu, Fe, Mg, Mn, Ni, Cd, Se, Sr, Zn, Pb, in Brisbane River sediments were investigated. The study confirmed that the risk associated with microplastics is based on their monomer composition rather than the quantities present. Sediments having relatively higher abundance of microplastics with a relatively lower hazard score result in higher nutrient concentrations. The concentrations of metals in river sediments are more dependent on their original sources rather than the concentration of microplastics. Nevertheless, leachate from plastics should be considered in risk assessment in relation to the association between metals and plastics in aquatic environments.
Mostrar más [+] Menos [-]Toxicokinetics and persistent thyroid hormone disrupting effects of chronic developmental exposure to chlorinated polyfluorinated ether sulfonate in Chinese rare minnow
2020
Liu, Wei | Yang, Jing | Li, Jingwen | Zhang, Jiangyu | Zhao, Jing | Yu, Dan | Xu, Yukang | He, Xin | Zhang, Xin
The abnormality in thyroid hormone modulation in developmental fish, vulnerable to per- and polyfluorinated substances, is of particular concerns for the alternative substances. Juvenile rare minnows, were exposed to chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), the novel alternatives to perfluorooctane sulfonate (PFOS), for 4 weeks followed by 12 weeks of depuration. Half lives were determined to be 33 d, 29 d, and 47 d for total Cl-PFESAs, C8 Cl-PFESA and C10 Cl-PFESA, respectively. Preliminary toxicity test suggested that Cl-PFESAs are moderately toxic to Rare minnow with a LC50 of 20.8 mg/L (nominal concentration) after 96 h of exposure. In the chronic toxicity test, fishes were exposed to Cl-PFESAs at geometric mean measured concentrations of 86.5 μg/L, 162 μg/L and 329 μg/L. In juvenile fishes exposed to Cl-PFESAs for 4 weeks, gene profile sequencing analysis identified 3313 differentially expressed genes, based on which pathways regulating thyroid hormone synthesis and steroid synthesis were enriched. Both whole body total and free 3,5,3′-triiodothyronine (T3) levels were significantly increased. mRNA expression of genes regulating thyroid hormone synthesis (corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (THS), sodium/iodide symporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO), transport (transthyretin,TTR), deiodinase (Dio1, Dio2) and receptor (TRα and TRβ) were decreased. Uridinediphosphate glucoronosyl-transferases (UGT1A) gene, regulating THs metabolism, was also decreased. In adult fish, thyroid hormone and genes expression in hypothalamic-pituitary-thyroid axis remained at disturbed levels after 12 weeks of depuration without exposure. Chronic developmental exposure to Cl-PFESAs caused persistent thyroid hormone disrupting effects in fish, highlighting a necessity of comprehensive ecological risk assessment.
Mostrar más [+] Menos [-]Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system
2020
The microbe-driven iron cycle plays an important role in speciation transformation and migration of arsenic (As) in soil-rice systems. In this study, pot experiments were used to investigate the effect of bacterial iron (Fe) reduction processes in soils on As speciation and migration, as well as on As uptake in soil-rice system. During the rice growth period, pH and electrical conductivity (EC) in soil solutions initially increased and then decreased, with the ranges of 7.4–8.8 and 116.3–820 mS cm⁻¹, respectively. The concentrations of Fe, total As and As(III) showed an increasing trend in the rhizosphere and non-rhizosphere soil solutions with the increasing time. Fe concentrations were significantly positively correlated with total As and As(III) concentrations (***p < 0.001) in the soil solutions. The abundances of the arsenate reductase gene (arsC) and the As(III) S-adenosylmethionine methyltransferase gene (arsM) in rhizosphere soils were higher than those in non-rhizosphere soils, while the abundance of the Fe-reducing bacteria (Geo) showed an opposite trend. Moreover, it showed that the Geo abundance was significantly positively correlated with that of the arsC (***p < 0.001) and arsM (**p < 0.01) genes, respectively. The abundances of Geo, arsC and arsM genes were significantly positively correlated with the concentrations of Fe, total As and As(III) in the soil solutions (*p < 0.05). Moreover, the abundances of arsC and arsM genes were significantly negatively correlated with total As and As(III) in rice grains (*P < 0.05). These results showed that the interaction of bacterial Fe reduction process and radial oxygen loss from roots promoted the reduction and methylation of As, and then decreased As uptake by rice, which provided a theoretical basis for alleviating As pollution in paddy soils.
Mostrar más [+] Menos [-]Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway?
2020
Due to the potential toxicity of polycyclic aromatic hydrocarbons (PAHs) to humans, the uptake and translocation of PAHs in food crops have gained much attention. However, it is still unclear whether phloem participates in the acropetal translocation of PAHs in plants. Herein, the evidence for acropetal translocation of phenanthrene (a model PAH) via phloem is firstly tested. Wheat (Triticum aestivum L.) new leaves contain significantly higher phenanthrene concentration than old leaves (P < 0.05), and the inhibitory effect on phenanthrene translocation is stronger in old leaves after abscisic acid and polyvinyl alcohol (two common transpiration inhibitors) application. Phenanthrene concentration in xylem sap is slightly higher than in phloem sap. Ring-girdling treatment can significantly reduce phenanthrene concentration in castor bean (Ricinus communis L.) leaves. Two-photon fluorescence microscope images indicate a xylem-to-phloem and acropetal phloem translocation of phenanthrene in castor bean stem. Therefore, phloem is involved in the acropetal translocation of phenanthrene in wheat seedlings, especially when the xylem is not mature enough in scattered vascular bundle plants. Our results provide a deeper understanding of PAH translocation in plants, which have significant implications for food safety and phytoremediation enhancement of PAH-contaminated soil and water.
Mostrar más [+] Menos [-]Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders
2020
Chen, Jianfei | Tong, Tianli | Jiang, Xinshu | Xie, Shuguang
The pollution of wastewater with antibiotics and antibiotics resistance genes has attracted public concerns about ecosystem and global health. Swine wastewater can contain high concentrations of antibiotics, especially sulfonamides, even after full-scale wastewater treatment. In this study, mesocosm-scale vertical flow constructed wetlands (VF-CWs) were applied to abate nutrients and antibiotics in swine wastewater containing sulfonamides. VF-CWs performed well in the removal of both nutrients and antibiotics. Sulfonamides did not influence total organic carbon (TOC) and total phosphorus (TP) removal, and even slightly enhanced NH₄⁺–N removal. High removal efficiencies (26.42–84.05%) were achieved for sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfamethazine (SMZ). Together with lab-scale sorption and biodegradation experiments, microbial degradation was found to be the most important removal mechanism for sulfonamides in VF-CWs. Sulfonamides addition increased bacterial alpha-diversity and changed microbial community structure. Moreover, antibiotics promoted antibiotic-resistant or -degrading bacteria. Bacillus, Geobacter and other seven genera were correlated with sulfonamides reduction under either aerobic or anaerobic condition. In summary, VF-CW is a suitable alternative for swine wastewater treatment, and biodegradation plays the key role in sulfonamides abatement.Main findings of the work.This was the first work to combine bacterial community analysis with microcosm experiments to uncover the major removal mechanism of sulfonamides in constructed wetlands.
Mostrar más [+] Menos [-]Exploring the environmental fate of novel brominated flame retardants in a sediment-water-mudsnail system: Enrichment, removal, metabolism and structural damage
2020
Novel brominated flame retardants (NBFRs) are now ubiquitous in the environment with the extensive production and application. In the present study, pentabromotoluene (PBT), hexabromobenzene (HBB) and decabromodiphenyl ethane (DBDPE) were spiked into the sediments where mudsnails (Bellamya aeruginosa) were cultivated. In the 35-day enrichment process, the highest concentration of the three NBFRs measured in mudsnail is 2.0 mg/kg, 22 mg/kg and 5.2 mg/kg dry weight (dw), respectively. The average enrichment of NBFRs in viscera was about 3 times of pleopod with the same mass. Meanwhile, the parent mudsnails can transfer NBFRs to their offspring. The removal half-life of the three NBFRs was in the range of 2.6 and 5.7 days according to the first-order kinetic equation. Several degradation products of the NBFRs were detected in mudsnail samples, which were exposed to single substance. 2,4,6-tribromotoluene was identified as degradation product of PBT; 1,2,4,5-tetrabromobenzene and 1,2,4-tribromobenzene were identified as debromination products of HBB. Possible degradation pathways were further proposed. Additionally, mudsnails after exposed to 50 mg/kg of NBFRs were observed under a scanning electron microscope, indicating that shrinkage, tissue hyperplasia and perforation occurred on the visceral surface. Such damage might be related to the accumulation of more pollutants in mudsnails viscera. As one of the few studies to explore the biological process of NBFRs, our observation could provide a scientific basis for evaluating the environmental risks of NBFRs to benthic organisms.
Mostrar más [+] Menos [-]