Refinar búsqueda
Resultados 1031-1040 de 7,240
Associations of propylene oxide exposure with fasting plasma glucose and diabetes: Roles of oxidative DNA damage and lipid peroxidation
2022
Liu, Wei | Wang, Bin | Yang, Shijie | Xu, Tao | Yu, Linling | Wang, Xing | Cheng, Man | Zhou, Min | Chen, Weihong
Whether propylene oxide (PO) exposure is associated with hyperglycemia were rarely explored. We aimed to determine the relationship between PO exposure and glucose metabolism, and potential role of oxidative stress. Among 3294 Chinese urban adults, urinary PO metabolite (N-Acetyl-S-(2-hydroxypropyl)-L-cysteine, 2HPMA), biomarkers of oxidative DNA damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) and lipid peroxidation (8-isoprostane, 8-iso-PGF₂α) in urine were determined. The associations of 2HPMA with 8-OHdG, 8-iso-PGF₂α, fasting plasma glucose (FPG), and risk of diabetes were explored. The roles of 8-OHdG and 8-iso-PGF₂α on association of 2HPMA with FPG and risk of diabetes were detected. After adjusted for potential confounders, each 1-unit increase in log-transformed concentration of 2HPMA was associated with a 0.15-mmol/L increase in FPG level, and the adjusted OR (95% CI) of diabetes by the associations of log-transformed urinary 2HPMA concentrations was 1.47 (95% CI: 1.03–2.11). Combination effects of 2HPMA with 8-OHdG or 8-iso-PGF₂α on risk of diabetes were detected, and elevated 8-iso-PGF₂α significantly mediated 34.5% of the urinary 2HPMA-associated FPG elevation. PO exposure was positively associated with FPG levels and risk of diabetes. PO exposure combined with DNA oxidative damage or lipid peroxidation may increase the risk of diabetes, and lipid peroxidation may partially mediate the PO exposure-induced FPG elevation.
Mostrar más [+] Menos [-]Assessing the leaching of cadmium in an irrigated and grazed pasture soil
2022
McDowell, R.W.
To decrease the concentration of the toxic metal cadmium (Cd) in topsoil, and the human food chain, many countries have limited the Cd concentration allowed in phosphorus (P) fertilisers. However, to inform those limits we need accurate estimates of Cd leaching from established farming systems. Different soil layers were sampled to 2000 mm depth of a long-term trial that had applied 22.5 kg P ha⁻¹ yr⁻¹ for 67 years to grazed pastures that received either no irrigation or were irrigated when soil moisture fell below 10 or 20%. The annual yield of Cd leaching from the top 150 mm of soil to the 151–250 mm layer was between 1.1 and 1.8 g ha⁻¹ with Cd leaching increasing with the frequency of irrigation. The rate of Cd accumulation measured to 2000 mm was within the mean and standard error estimated for treatments using a mass balance approach. Estimates of annual Cd leaching loss were like those established from field trials measuring leaching events over a year (0.3–1.8 g ha⁻¹) with a similar rate of P application (9–24 kg P ha⁻¹ yr⁻¹). Using a Cd leaching rate of 1.8 g ha⁻¹ yr⁻¹ and P applications rates of 22.5 kg P ha⁻¹, topsoil Cd concentrations may stop increasing if Cd concentrations in P fertiliser can be maintained at < 72 mg Cd kg⁻¹ P.
Mostrar más [+] Menos [-]Source attribution and quantification of atmospheric nickel concentrations in an industrial area in the United Kingdom (UK)
2022
Font, Anna | Tremper, Anja H. | Priestman, Max | Kelly, Frank J. | Canonaco, Francesco | Prévôt, André S.H. | Green, David C.
Pontardawe in South Wales, United Kingdom (UK), consistently has the highest concentrations of nickel (Ni) in PM₁₀ in the UK and repeatedly breaches the 20 ng m⁻³ annual mean EU target value. Several local industries use Ni in their processes. To assist policy makers and regulators in quantifying the relative Ni contributions of these industries and developing appropriate emission reduction approaches, the hourly concentrations of 23 elements were measured using X-ray fluorescence alongside meteorological variables and black carbon during a four-week campaign in November–December 2015. Concentrations of Ni ranged between 0 and 2480 ng m⁻³ as hourly means. Positive Matrix Factorization (PMF) was used to identify sources contributing to measured elements. Cluster analysis of bivariate polar plots of those factors containing Ni in their profile was further used to quantify the industrial processes contributing to ambient PM₁₀ concentrations. Two sources were identified to contribute to Ni concentrations, stainless-steel (which contributed to 10% of the Ni burden) and the Ni refinery (contributing 90%). From the stainless-steel process, melting activities were responsible for 66% of the stainless-steel factor contribution.
Mostrar más [+] Menos [-]A songbird can detect the eyes of conspecifics under daylight and artificial nighttime lighting
2022
Yorzinski, Jessica L. | Troscianko, Jolyon | Briolat, Emmanuelle | Schapiro, Steven Jay | Whitham, Will
Eyes convey important information about the external and internal worlds of animals. Individuals can follow the gaze of others to learn about the location of salient objects as well as assess eye qualities to evaluate the health, age or other internal states of conspecifics. Because of the increasing prevalence of artificial lighting at night (ALAN), urbanized individuals can potentially garner information from conspecific eyes under both daylight and ALAN. We tested this possibility using a visual modeling approach in which we estimated the maximum distance at which individuals could detect conspecific eyes under daylight and high levels of ALAN. We also estimated the minimum light level at which individuals could detect conspecific eyes. Great-tailed grackles (Quiscalus mexicanus) were used as our study species because they are highly social and are unusual among birds in that they regularly gather at nocturnal roosts in areas with high levels of ALAN. This visual modelling approach revealed that grackles can detect conspecific eyes under both daylight and ALAN, regardless of iris coloration. The grackles could detect conspecific eyes at farther distances in daylight compared to ALAN. Our results highlight the potential importance of lighting conditions in shaping social interactions.
Mostrar más [+] Menos [-]Response addition is more protective of biogeochemical cycles of carbon and phosphorus compared to concentration addition
2022
Awuah, Kobby Fred | Jegede, Olukayode | Cousins, Mark | Renaud, Mathieu | Hale, Beverley | Siciliano, Steven Douglas
In soils, enzymes are crucial to catalyzing reactions and cycling elements such as carbon (C), nitrogen (N), and phosphorus (P). Although these soil enzymes are sensitive to metals, they are often disregarded in risk assessments, and regulatory laws governing their existence are unclear. Nevertheless, there is a need to develop regulatory standards for metal mixtures that protect biogeochemical cycles because soil serve as a sink for metals and exposures occur as mixtures. Using a fixed ratio ray design, we investigated the effects of 5 single metals and 10 quinary mixtures of Zn, Cu, Ni, Pb, and Co metal oxides on two soil enzymes (i.e., acid phosphatases [ACP] and beta glucosidases [BGD]) in two acidic Canadian soils (S1: acid sandy forest soil, and S2: acid sandy arable soil), closely matched to EU REACH standard soils. Compared to BGD, ACP was generally the more sensitive enzyme to both the single metals and the metal mixtures. The effective concentration inhibiting 50% enzyme activity (EC₅₀) estimates for single Cu (2.1–160.7 mmol kg⁻¹) and Ni (12–272 mmol kg⁻¹) showed that those were the most toxic to both enzymes in both soils. For metal mixtures, response addition (RA) was more conservative in predicting metal effects compared to concentration addition (CA). For both additivity models, antagonism was observed except at lower concentrations (≤10,000 mg/kg) where synergism was observed. At higher concentrations (>10,000 mg/kg), free and CaCl₂ extractable Cu protected both enzymes against the toxicity of other metals in the mixture. The results suggest that assuming CA at concentrations less than EC₅₀ does not protect biogeochemical cycling of C and P. And Cu in soil may protect soil enzymes from other toxic metals and thus may have an overall positive role.
Mostrar más [+] Menos [-]PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study
2022
Babayev, Maksat | Capozzi, Staci L. | Miller, Pamela | McLaughlin, Kelly R. | Medina, Samarys Seguinot | Byrne, Samuel | Zheng, Guomao | Salamova, Amina
Per- and polyfluoroalkyl substances (PFAS) have become a target of rigorous scientific research due to their ubiquitous nature and adverse health effects. However, there are still gaps in knowledge about their environmental fate and health implications. More attention is needed for remote locations with source exposures. This study focuses on assessing PFAS exposure in Gustavus, a small Alaska community, located near a significant PFAS source from airport operations and fire training sites. Residential water (n = 25) and serum (n = 40) samples were collected from Gustavus residents and analyzed for 39 PFAS compounds. In addition, two water samples were collected from the previously identified PFAS source near the community. Fourteen distinct PFAS were detected in Gustavus water samples, including 6 perfluorinated carboxylic acids (PFCAs), 7 perfluorosulfonic acids (PFSAs), and 1 fluorotelomer sulfonate (FTS). ΣPFAS concentrations in residential drinking water ranged from not detected to 120 ng/L. High ΣPFAS levels were detected in two source samples collected from the Gustavus Department of Transportation (14,600 ng/L) and the Gustavus Airport (228 ng/L), confirming these two locations as a nearby major source of PFAS contamination. Seventeen PFAS were detected in serum and ΣPFAS concentrations ranged from 0.0170 to 13.1 ng/mL (median 0.0823 ng/mL). Perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) were the most abundant PFAS in both water and serum samples and comprised up to 70% of ΣPFAS concentrations in these samples. Spearman's correlation analysis revealed PFAS concentrations in water and sera were significantly and positively correlated (r = 0.495; p = 0.0192). Our results confirm a presence of a significant PFAS source near Gustavus, Alaska and suggest that contaminated drinking water from private wells contributes to the overall PFAS body burden in Gustavus residents.
Mostrar más [+] Menos [-]Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure
2022
Park, Yoo-Jin | Rahman, Md. Saidur | Pang, Won-Ki | Ryu, Do-Yeal | Jung, Min-Ji | Amjad, Shehreen | Kim, Jun-Mo | Pang, Myung-Geol
Bisphenol A (BPA) is pervasive in the environment, and exposure to BPA may increase the incidence of noncommunicable diseases like autoimmune diseases and cancer. Although BPA causes immunological problems at the cellular level, no system-level research has been conducted on this. Hence, in this study, we aimed to gain a better understanding of the biological response to BPA exposure and its association with immunological disorders. For that, we explored the transcriptome and the proteomic modifications at the systems and cellular levels following BPA exposure. Our integrated multi-omics data showed the alteration of the T cell receptor (TCR) signaling pathway at both levels. The proportion of enlarged T cells increased with upregulation of CD69, a surface marker of early T cell activation, even though the number of T cells reduced after BPA exposure. Additionally, on BPA exposure, the levels of pLCK and pSRC increased in T cells, while that of pLAT decreased. Following BPA exposure, we investigated cytokine profiles and discovered that chitinase 3 Like 1 and matrix metalloproteinase 9 were enriched in T cells. These results indicated that T cells were hyperactivated by CD69 stimulation, and phosphorylation of SRC accelerated on BPA exposure. Hence, alteration in the TCR signaling pathway during development and differentiation due to BPA exposure could lead to insufficient and hasty activation of TCR signaling in T cells, which could modify cytokine profiles, leading to increased environmental susceptibility to chronic inflammation or diseases, increasing the chance of autoimmune diseases and cancer. This study enhances our understanding of the effects of environmental perturbations on immunosuppression at molecular, cellular, and systematic levels following pubertal BPA exposure, and may help develop better predictive, preventative, and therapeutic techniques.
Mostrar más [+] Menos [-]Burden of diseases attributed to traffic noise in the metropolis of Tehran in 2017
2022
Shamsipour, Mansour | Zaredar, Narges | Monazzam, Mohammad Reza | Namvar, Zahra | Mohammadpour, Saman
Although road traffic noise is the most important source of environmental noise emission in large cities, little is known about health burden. The present study was conducted to estimate the burden of diseases attributed to traffic noise in the metropolis of Tehran in 2017. Using noise maps provided by the municipality of Tehran, we calculated population exposure distribution in term of Ldₙ and Lₙᵢgₕₜ and the number of DALYs lost due to ischemic heart disease, hypertension, high sleep disturbance, annoyance and stroke endpoints based on the World Health Organization Environmental Noise Guidelines for the European Region. We applied published dose-response functions to estimate the traffic noise burden for high sleep disturbance and annoyance. We estimated 61,284 DALYs or 697 DALYs per 100,000 population attributed to traffic noise in Tehran for the reference year 2017. Highly sleep disturbance with a share of 58.74% of the DALYs was recognized as the most important contributor of disease burden, and noise annoyance with a share of 23.12% was ranked next. Ischemic heart disease (11.71%), stroke (5.12%), and hypertension (1.31%) were ranked third to fourth, respectively, in terms of the burden of disease caused by environmental noise. A considerable fraction of the population of Tehran lives in areas with an environmental noise higher than the standard level. The findings showed that traffic noise pollution is an important environmental risk factor in Tehran imposes the greatest burden on the community, mainly through highly sleep disturbance and noise annoyance endpoints.
Mostrar más [+] Menos [-]A look down the drain: Identification of dissolved and particle bound organic pollutants in urban runoff waters and sediments
2022
Fuchte, Hanna E. | Beck, Natascha | Bieg, Evelyn | Bayer, Viviane J. | Achten, Christine | Krauss, Martin | Schäffer, Andreas | Smith, Kilian E.C.
Urban runoff contains a range of organic micropollutants which, if not removed during wastewater treatment, pose a risk to aquatic environments. These mixtures are complex and often site-specific. Street drains provide an ideal sampling point given they collect the runoff from local and defined catchments. In this study, runoff was collected and sampled in five street drains located in a medium sized town in Germany. A specially constructed trap was used to collect the particulate and total water fractions of the runoff. In addition, passive samplers were deployed to determine the freely dissolved concentrations of selected compounds in the runoff. In sum, 187 polar organic micropollutants could be quantified using LC-HRMS. Thirty of these could only be detected by the use of passive samplers. Traffic derived pollutants such as corrosion inhibitors, rubber- and plastic additives, but also pollutants of industrial origin were strongly represented with sum median concentrations of 100 μg/kg dry weight (DW) in the sediment and 400 ng/L in the water fraction. Several of these substances are of concern due to their environmental persistence and mobility. Perfluorinated compounds and pesticides occurred at lower levels of several μg/kg DW sediment or ng/L water. A number of substances including pharmaceuticals, sweeteners and stimulants indicated domestic wastewater influences. Furthermore, a total of 62 parent and alkylated PAHs were quantified by GC-MS and contributed 30–70% to the sum concentrations of the micropollutants. Non-EPA PAHs dominated the carcinogenic PAH toxicity. The increased PAH alkylation indices (0.7–0.9) showed these primarily came from combustion sources. The runoff particles were additionally microscopically characterized, and correlations were found between the rubber particle counts and the PAH alkylation-index as well as the levels of 2-(methylthio)benzothiazole, a marker compound for tire leaching.
Mostrar más [+] Menos [-]Rape straw application facilitates Se and Cd mobilization in Cd-contaminated seleniferous soils by enhancing microbial iron reduction
2022
Lyu, Chenhao | Li, Lei | Liu, Xinwei | Zhao, Zhuqing
Many naturally seleniferous soils are faced with Cd contamination problem, which severely limits crop cultivation in these areas. Straw returning has been widely applied in agricultural production due to its various benefits to soil physicochemical properties, soil fertility, and crops yield. However, effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils remain largely unclear. Therefore, the effects of straw application on the fates of Se and Cd in Cd-contaminated seleniferous soils were investigated in this study. The results showed that iron reduction driven by Clostridium and Anaeromyxbacter was responsible for the variations in Se and Cd fates in soil. Straw application respectively increased the gene copy numbers of Clostridium and Anaeromyxbacter by 19.5–56.3% and 33.6–39.8%, thus promoting iron reductive dissolution, eventually resulting in a high release amount of Se and Cd from Fe(III) (oxyhydr) oxides. Under reducing conditions, the released Cd was adsorbed by the newly formed metal sulfides or reacted with sulfides to generate CdS precipitates. Straw application decreased the soil exchangeable Se and soil exchangeable Cd concentration during flooding phase. However, straw application significantly increased Se/Cd in soil solution which had the highest bioavailability during flooding. In addition, straw application increased soil exchangeable Se concentration, but it had no significant effects on soil exchangeable Cd concentration after soil drainage. Taken together, straw application increased Se bioavailability and Cd mobility. Therefore, straw application is an effective method for improving Se bioavailability, but it is not suitable for the application to Cd-contaminated paddy soils. In the actual agricultural production, straw could be applied in seleniferous soils to improve Se bioavailability. At the same time, straw application should be cautious to avoid the release of Cd from Cd-contaminated soil.
Mostrar más [+] Menos [-]