Refinar búsqueda
Resultados 1051-1060 de 4,949
Synthesis and adsorption of Fe[sbnd]Mn[sbnd]La-impregnated biochar composite as an adsorbent for As(III) removal from aqueous solutions
2019
Lin, Lina | Zhang, Guogang | Liu, Xuewei | Khan, Zulqarnain Haider | Qiu, Weiwen | Song, Zhengguo
Groundwater with elevated As concentrations is a global concern, and low-cost, high-efficiency removal technologies are necessary. Therefore, we have prepared three adsorbent FeMnLa-impregnated biochar composites (FMLBCs) for the efficient removal of As(III) from aqueous solutions and characterized them using a variety of techniques. We found that the efficiency of As(III) removal increased with increasing La content and that the removal mainly occurred via adsorption and oxidation. Moreover, the removal of As(III) by FMLBCs was rapid and was best fitted to a pseudo-second-order kinetic model. The adsorption isotherms were well described by the Langmuir equation, and the maximum As(III) adsorption capacity was 15.34 mg g⁻¹. These results highlight the significant potential of FMLBCs as adsorbents for As(III) removal from aqueous solutions.
Mostrar más [+] Menos [-]Residues of pesticides and some metabolites in dissolved and particulate phase in surface stream water of Cachapoal River basin, central Chile
2019
Climent, María José | Herrero-Hernández, Eliseo | Sánchez-Martín, M. Jesús (María Jesús) | Rodríguez-Cruz, M. Sonia (María Sonia) | Pedreros, Pablo | Urrutia, Roberto
In the last twenty years, pesticide use in Chile has increased more than 160%, generating a greater risk of water resources pollution. The objective of this study was to assess the presence of 22 pesticides and 12 degradation products in surface water samples from the Cachapoal River basin, Central Chile, an area characterized by intense agricultural activity. Pesticide concentrations in the dissolved phase (DP) and particulate phase (PP) in samples collected in the dry season and after precipitation events was assessed. The solid-phase extraction technique was used to preconcentrate the samples and GC/MS and LC/MS were used to detect pesticides. The results present spatio-temporal variations in the proportion and concentration of pesticides and their degradation products in both the DP and PP for each site and sampling period. The most ubiquitous compounds in the dissolved phase were atrazine, atrazine-2-hydroxy (HA), cyprodinil, pyrimethanil, and tebuconazole, while in the particulate phase HA, imidacloprid, diazinon and pyrimidinol were detected. The results presented in this study make up the first record of pesticides in the dissolved and particulate phases in surface water in Chile. They show that the problem of pesticide contamination undoubtedly affects the quality of bodies of water in agricultural areas in Chile and support the need for a proper assessment of the water quality of the Cachapoal River in the future.
Mostrar más [+] Menos [-]Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5 /AOD relationship in eastern China using radiosonde data
2019
Bai, Kaixu | Chang, Ni-Bin | Zhou, Jiayuan | Gao, Wei | Guo, Jianping
Atmospheric stability significantly influences the accumulation and dispersion of air pollutants in the near-surface atmosphere, yet few stability metrics have been applied as predictors in statistical PM₂.₅ concentration mapping practices. In this study, eleven stability metrics were derived from radiosonde soundings collected in eastern China for the time period of 2015–2018 and then applied as independent predictors to explore their potential in favoring the prediction of PM₂.₅. The statistical results show that the in situ PM₂.₅ concentration measurements correlated well with these stability metrics, especially at monthly and seasonal timescales. In contrast, correlations at the daily timescale differed markedly between stability metric and also varied with seasons. Nevertheless, the modeling results indicate that incorporating these stability metrics into the PM₂.₅ modeling framework rendered small contribution to PM₂.₅ prediction accuracy, yielding an increase of R² by < 5% and a reduction of RMSE by < 1 μg/m³ on average. Compared with other stability indices, the inversion depth and intensity appeared to have relative larger benefiting potential. In general, our findings indicate that including these stability metrics would not result in significant contribution to the PM₂.₅ prediction accuracy in eastern China since their effects could be partially overwhelmed or offset by other predictors such as AOD and boundary layer height.
Mostrar más [+] Menos [-]Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation
2019
Huang, Zhi-Wei | Li, Zi-Jie | Zheng, Li-Rong | Wu, Wang-Suo | Chai, Zhi-Fang | Shi, Wei-Qun
One of the most important reasons for the controversy over the development of nuclear energy is the proper disposal of spent fuel. Separation of actinide and lanthanide ions is an important part of safe long-term storage of radioactive waste. Herein, a three-dimensional (3D) graphene-based macrostructure (GOCS) was utilized to remove actinide thorium and lanthanide europium ions from aqueous solutions. The adsorption of Eu(III) and Th(IV) on the GOCS was evaluated as a function of adsorption time, solution pH, initial ion concentrations, and ionic strength. The experimentally determined maximum adsorption capacities of this GOCS for Eu(III) (pH 6.0) and Th(IV) (pH 3.0) are as high as 150 and 220 mg/g, respectively. By using Fourier transformation infrared (FT-IR), X-ray photoelectron (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy, we concluded that the Eu(III) and Th(IV) adsorption was predominantly attributed to the inner-sphere coordination with various oxygen- and nitrogen-containing functional groups on GOCS surfaces. Our selective adsorption results demonstrate that the actinide and lanthanide ions can be effectively separated from transition metal ions. This study provides new clues to the overall recycling of actinide and lanthanide ions in radioactive environmental pollution treatments.
Mostrar más [+] Menos [-]Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis
2019
Yang, Yang | Ruan, Zengliang | Wang, Xiaojie | Yang, Yin | Mason, Tonya G. | Lin, Hualiang | Tian, Linwei
Fine particulate matter (Particulate matter with diameter ≤ 2.5 μm) is associated with multiple health outcomes, with varying effects across seasons and locations. It remains largely unknown that which components of PM₂.₅ are most harmful to human health.We systematically searched all the relevent studies published before August 1, 2018, on the associations of fine particulate matter constituents with mortality and morbidity, using Web of Science, MEDLINE, PubMed and EMBASE. Studies were included if they explored the associations between short term or long term exposure of fine particulate matter constituents and natural, cardiovascular or respiratory health endpoints. The criteria for the risk of bias was adapted from OHAT and New Castle Ottawa. We applied a random-effects model to derive the risk estimates for each constituent. We performed main analyses restricted to studies which adjusted the PM₂.₅ mass in their models.Significant associations were observed between several PM₂.₅ constituents and different health endpoints. Among them, black carbon and organic carbon were most robustly and consistently associated with all natural, cardiovascular mortality and morbidity. Other potential toxic constituents including nitrate, sulfate, Zinc, silicon, iron, nickel, vanadium, and potassium were associated with adverse cardiovascular health, while nitrate, sulfate and vanadium were relevant for adverse respiratory health outcomes.Our analysis suggests that black carbon and organic carbon are important detrimental components of PM₂.₅, while other constituents are probably hazardous to human health. However, more studies are needed to further confirm our results.
Mostrar más [+] Menos [-]Vulnerability of Indian wheat against rising temperature and aerosols
2019
Sonkar, Geetika | Mall, R.K. | Banerjee, Tirthankar | Singh, Nidhi | Kumar, T.V Lakshmi | Chand, Ramesh
Potential impacts of change in climate on Indian agriculture may be significantly adverse, if not disastrous. There are projections of potential loss in wheat yield due to the rise in daily minimum (Tmin) and maximum (Tmax) temperature, but only few researchers have considered the extent of such loss on a spatial scale. We therefore, systematically studied the effect of change in Tmax, Tmean (daily average temperature) and Tmin, solar radiation (Srad) and precipitation (RAIN) during wheat growing seasons (from 1986 to 2015) on wheat crop yield over five wheat growing zones across India, taking into account the effect modification by aerosol loading (in terms of aerosol optical depth, 2001–2015). We note that for the entire India, 1 °C rise in Tmean resulted a 7% decrease in wheat yield which varied disproportionately across the crop growing zones by a range of −9% (peninsular zone, PZ) to 4% (northern hills zone, NHZ). The effect of Tmean on wheat yield was identical to the marginal effect of Tmax and Tmin, while 1% increase in Srad enhance wheat yield by 4% for all India with small geographical variations (2–5%), except for the northern hill region (−4%). Rise in 1 °C Tmean exclusively during grain filling duration was noted positive for all the wheat growing regions (0–2%) except over central plain zone (−3%). When estimates of weather variables on wheat yield was combined with the estimated impact of aerosols on weather, the most significant impact was noted over the NHZ (−23%), which otherwise varied from −7% to −4%. Overall, the study brings out the conclusive evidence of negative impact of rising temperature on wheat yield across India, which we found spatially inconsistent and highly uncertain when integrated with the compounding effect of aerosols loading.
Mostrar más [+] Menos [-]The impact of air pollutants on ambulance dispatches: A systematic review and meta-analysis of acute effects
2019
Sangkharat, Kamolrat | Fisher, Paul | Thomas, G Neil | Thornes, John | Pope, Francis D.
A number of systematic reviews have investigated the association between air pollutants and health impacts, these mostly focus on morbidity and mortality from hospital data. Previously, no reviews focused solely on ambulance dispatch data. These data sets have excellent potential for environmental health research. For this review, publications up to April 2019 were identified using three main search categories covering: ambulance services including dispatches; air pollutants; and health outcomes. From 308 studies initially identified, 275 were excluded as they did not relate to ambulance service dispatches, did not report the air pollutant association, and/or did not study ambient air pollution. The main health outcomes in the remaining 33 studies were cardiac arrest (n = 14), cardiovascular (n = 11) and respiratory (n = 10) dispatches. Meta-analyses were performed to summarise pooled relative risk (RR) of pollutants: particulate matter less than 2.5 and 10 μm (PM₂.₅, PM₁₀), the fraction between PM₁₀ and PM₂.₅ (coarse) and suspended particulate matter (SPM) per 10 μg/m³ increase, carbon monoxide (CO) per 1 ppm increase and of sulphur dioxide (SO₂), nitrogen dioxide (NO₂), and ozone (O₃) per 10 ppb increment and ambulance dispatches. Statistically significant associations were found for ambulance dispatch data for all-respiratory and PM₂.₅ at 1.03 (95% CI:1.02–1.04) and at 1.10 (95% CI:1.00–1.21) for asthma and NO₂ associations. For dispatches with subsequent paramedic assessment for cardiac arrest with PM₂.₅, CO and coarse dispatches at 1.05 (95% CI:1.03–1.08), 1.10 (95% CI:1.02–1.18) and 1.04 (95% CI:1.01–1.06) respectively. For dispatches with subsequent physician diagnosis for all-respiratory and PM₂.₅ at 1.02 (95% CI:1.01–1.03). In conclusion, air pollution was significantly associated with an increase in ambulance dispatch data, including those for cardiac arrest, all-respiratory, and asthma dispatches. Ambulance services should plan accordingly during pollution events. Furthermore, efforts to improve air quality should lead to decreases in ambulance dispatches.
Mostrar más [+] Menos [-]Spatial and temporal risk quotient based river assessment for water resources management
2019
Wan Mohtar, Wan Hanna Melini | Khairul Nizam Abdul Maulud, | Muhammad, Nur Shazwani | Sharil, Suraya | Yaseen, Zaher Mundher
Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH₃) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
Mostrar más [+] Menos [-]Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat
2019
Lü, Hemin | Zhang, Huishan | Gao, Jie | Li, Zhaohui | Bao, Suhao | Chen, Xianwu | Wang, Yiyan | Ge, Renshan | Ye, Leping
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic (PFOS) are two perfluorinated chemical products widely existing in the environment. Evidence suggested that PFOA might relate to male reproductive dysfunction in rats and humans. PFOA exposure inhibited the function of Leydig cells. However, it is still unknown whether PFOA affects stem Leydig cells (SLCs). In the present study, we examined the effects of a short-term exposure to PFOA on Leydig cell regeneration and also explored the possible mechanism involved. Thirty-six adult Sprague-Dawley rats were randomly divided into three groups and intraperitoneally injected with a single dose of 75 mg/kg ethane dimethyl sulfonate (EDS) to eliminate all Leydig cells. From post-EDS day 7, the 3 group rats received 0, 25 or 50 mg/kg/day PFOA (n = 12 per group) for 9 consecutive days. Exposure to PFOA significantly decreased serum testosterone levels by day 21 and day 56 post-EDS treatment. Also, the expression levels of Leydig cell specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1 and Cyp17a1) and their protein levels were all down-regulated. PFOA exposure may also affect proliferation of SLCs or their progeny since the numbers of PCNA-positive Leydig cells were reduced by post-EDS day 21. These in vivo observations were also confirmed by in vitro studies where the effects of PFOA were tested by culture of seminiferous tubules. In summary, PFOA exposure inhibits the development of Leydig cells, possibly by affecting both the proliferation and differentiation of SLCs or their progeny.
Mostrar más [+] Menos [-]Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock
2019
Sørensen, Lisbet | Hansen, Bjørn Henrik | Farkas, Júlia | Donald, Carey E. | Robson, William J. | Tonkin, Andrew M. | Meier, Sonnich | Rowland, Steven J.
A multitude of recent studies have documented the detrimental effects of crude oil exposure on early life stages of fish, including larvae and embryos. While polycyclic aromatic hydrocarbons (PAHs), particularly alkyl PAHs, are often considered the main cause of observed toxic effects, other crude oil derived organic compounds are usually overlooked. In the current study, comprehensive two-dimensional gas chromatography coupled to mass spectrometry was applied to investigate the body burden of a wide range of petrogenic compounds in Atlantic haddock (Melanogrammus aeglefinus) and cod (Gadus morhua) embryos that had been exposed to sublethal doses of dispersed crude oil. Several groups of alkylated monoaromatic compounds (e.g. alkyl tetralins, indanes and alkyl benzenes), as well as highly alkylated PAHs, were found to accumulate in the fish embryos upon crude oil exposure. To investigate the toxicity of the monoaromatic compounds, two models (1-isopropyl-4-methyltetralin and 1-isopropyl-4-methylindane) were synthesized and shown to bioaccumulate and cause delayed hatching in developing embryos. Minor developmental effects, including craniofacial and jaw deformations and pericardial edemas, were also observed at the highest studied concentrations of the alkylindane.
Mostrar más [+] Menos [-]