Refinar búsqueda
Resultados 1061-1070 de 1,953
A Novel Approach to Precipitation of Heavy Metals from Industrial Effluents and Single-Ion Solutions Using Bacterial Alkaline Phosphatase
2013
Chaudhuri, Gouri | Dey, Pritam | Dalal, Devjyoti | Venu-Babu, P. | Thilagaraj, W Richard
Enzymatic precipitation provides a novel cost-effective and eco-friendly method for remediation of heavy metals from different industrial effluents such as tannery, electroplating, dye industries, and many more. This study has paid attention to bacterial alkaline phosphatase (BAP) from Eschericia coli C90 which catalyzes para-nitrophenyl phosphate (pNPP) and produces inorganic phosphate (Pi) that helps in the precipitation of heavy metals as metalphosphates. The kinetic behavior of BAP with pNPP in Tris-HCl was studied for pH regimes 8, 8.5, 9, 9.5, 10, 10.5, and 11 in detail. The results showed that the maximum activity of the enzyme was at pH 8.5 with an incubation period of 300 min at 37 C. Based on the kinetic data, experiments were performed at pH 8.5 and pH 10 to precipitate Cr3+, Cr6+, Cd2+, Ni2+, and Co2+ from single-ion solutions (250 and 1,000 ppm concentrations) as well as industrial effluents, and the amount of metal precipitated as metalphosphate was derived by determining the amount of metal reduced in the supernatant of the reactions employing atomic absorption spectrophotometer. The precipitation of metals from single-ion solutions at pH 8.5 for 300 min incubation period followed the order Cd2+ > Ni2+ > Cr3+ > Cr6+ > Co2+. In the experiments involving effluents from tannery and electroplating industries, precipitation of 35.1 % of Cr6+, 77.80 % of Ni 2+, and 57.42 % of Cd2+ was achieved from initial concentrations of 621, 97, and 122 ppm, respectively. © 2013 Springer Science+Business Media Dordrecht.
Mostrar más [+] Menos [-]Occurrence and Removal of Antiviral Drugs in Environment: A Review
2013
Jain, Swati | Kumar, Pardeep | Vyas, Raj K. | Pandit, Prabhat | Dalai, Ajay K.
Antiviral drugs have been recently recognized as one of the emerging contaminants in the environment. These are discharged after therapeutic use through human excretion. Effluent containing high concentration of antiviral drugs discharged from production facilities is also a cause of concern to nearby aquatic bodies. There is an increased interest in their removal because they are highly bioactive. Some antiviral drugs are resistant to conventional methods of degradation, and there is a risk of development of antiviral resistance in humans and animals if exposed repeatedly for long periods. To date, the potential human, animal, and ecological risks associated with the discharge of these antiviral compounds to the environment are not well documented. This study presents a brief summary on occurrence, ecotoxicological risks, and physicochemical properties of antiviral drugs in the environment. The needs regarding removal, disposal, and treatment of antiviral drugs are also addressed.
Mostrar más [+] Menos [-]Electrochemical, Photochemical, and Photoelectrochemical Treatment of Sodium p-Cumenesulfonate
2013
Osiewała, Lidia | Socha, Adam | Perek, Aleksandra | Socha, Marek | Rynkowski, Jacek
The degradation of sodium p-cumenesulfonate (SCS) by electrochemical, photochemical, and photoelectrochemical methods in aqueous solution of NaClO4, NaCl, and NaClO has been studied. It was found that as a result of NaClO4 electroreduction and photodecomposition, the ions Cl- and ClO3- are formed. These ions undergo transformations into radicals, mainly Cl-center dot, Cl-2(center dot-), ClO center dot, ClO2 center dot, and ClO3 center dot, due to electrochemical and photochemical reactions. It was shown that the interpretation of results of the studies over mineralization processes carried out in the presence of ClO4-cannot be adequate without taking into consideration the reduction of ClO4 to Cl- and ClO3-. Therefore, previous works presented in the literature should be rediscussed on the basis of the new data. Photoelectrochemical mineralization of substrate in NaCl solution at the concentration of 16 mmol L-1 is comparable with the efficiency of the reaction in NaClO4 solution containing more than 8 mmol L-1 of NaClO. Total SCS mineralization was obtained in the photoelectrochemical reactor with a UV immersion lamp with a power 15 W in the period of 135 min and current intensity of 350 mA. In such conditions, the power consumption was about 1.2 kWh per g of TOC removed.
Mostrar más [+] Menos [-]Biotreatment of Melanoidin-Containing Distillery Spent Wash Effluent by Free and Immobilized Aspergillus oryzae MTCC 7691
2013
Chavan, M. N. | Dandi, N. D. | Kulkarni, M. V. | Chaudhari, A. B.
A total of three fungal isolates from samples collected at spent wash disposal area were screened for their ability to degrade melanoidin. Distillery molasses spent wash was decolorized, and its chemical oxygen demand (COD) was reduced in immobilized fungal bioreactor (IFB) in the absence of carbon and nitrogen source using fungal mycelia of Aspergillus oryzae MTCC 7691. Fungal mycelia immobilized on baggase packed in a glass column under a batch-wise mode (1) effected removal of 75.71 +/- 0.12 % color, 51.0 +/- 0.13 % biological oxygen demand (BOD), 86.19 +/- 2.56 % COD, and 49.0 +/- 0.12 % phenolic pigments of distillery spent wash up to 25 days at 30 degrees C, while free fungal mycelia resulted in removal of 63.1 +/- 0.16 % color, 27.74 +/- 0.14 % BOD, 76.21 +/- 1.62 % COD, and 37.32 +/- 0.17 % phenolic pigments of distillery spent wash using shake flask, (2) manganese peroxidase (MnP) activity was highest (1.55 +/- 0.01 U ml(-1) min(-1)) in immobilized fungi, followed by lignin peroxidase (0.65 +/- 0.01 U ml(-1) min(-1)) and laccase activity (0.9 +/- 0.01 CU ml (1) min (1)), (3) accumulative MnP activity was highly correlated with (r=0.9216) spent wash decolorization and (r=0.7282) reduction of phenolic pigments, suggesting the presence of MnP activities in bioremediation of spent wash and (4) degradation of spent wash was confirmed by high-performance thin layer chromatography and gas chromatography-mass spectrometry analysis. Measurement of chlorophyll a content of Chlorella species cultivated on treated spent wash effluent obtained from immobilized fungal bioreactor was 5.16 +/- 0.71 mu g ml(-1) compared with 1.306 +/- 0.017 +/-mu g ml(-1) obtained with untreated spent wash. Thus, this work may provide a reasonable alternative for cost-effective bioremediation of distillery spent wash using immobilized A. oryzae on baggase fibers.
Mostrar más [+] Menos [-]Acute Toxicity of Copper Sulfate and Potassium Dichromate on Stygobiont Proasellus: General Aspects of Groundwater Ecotoxicology and Future Perspectives
2013
Reboleira, Ana Sofia P. S. | Abrantes, Nelson | Oromí, Pedro | Gonçalves, Fernando
Karst systems harbor large groundwater resources for human consumption and represent an important habitat for rare and unprotected specialized animals, the so-called stygofauna. Due to the highly adapted features towards underground life, together with the geographic isolation provided by the subterranean aquifers, groundwater-dwelling animals may lose the ability to face sudden changes on their ecosystems, and therefore the risk of extinction is remarkably high. A little is known about their sensitiveness, especially linked to contamination pressure in urbanized karst areas. Understanding the impact of contaminants on stygofauna is important for setting groundwater environmental quality and management of karst systems. We have investigated acute toxicity responses in two endemic stygobiont species of the peri-Mediterranean genus Proasellus from two different karst areas and in freshwater standard species Daphnia magna exposed to two contaminants (copper sulfate; potassium dichromate). Groundwater from both sites was characterized in order to depict possible responses resulting from the long-term exposition of organisms to contaminants. Stygobiont Proasellus spp. were remarkably more tolerant than the epigean D. magna. The less groundwater-adapted revealed to be more tolerant to acute exposure to both toxics, suggesting that the degree of adaptation to groundwater life can influence the acute response of Proasellus spp. to pollutants, and that the tolerance to wide environmental conditions could be a key factor in groundwater colonization. This study highlights the worldwide need to use local specimens to infer the effects of pollution in their corresponding karst systems, which is important to define specific environmental quality thresholds for groundwater ecosystems that will certainly contribute for its protection.
Mostrar más [+] Menos [-]Using Biogeochemical Markers to Assess the Environmental Effects of Shore-Parallel Breakwaters on a Coastal Area Affected by Mass Tourism (Rimini, Italy)
2013
Matteucci, Gabriele | Fiesoletti, Federica | Rossini, Paolo
This paper discusses the effects of breakwaters on the Rimini coastal environment over the last half century. Sediment cores of 50 cm thick were collected in various seasons from 2002 to 2005 and were subsampled at surface and subsurface levels at 20 inshore and offshore stations in order to take account of various freshwater and wastewater inputs. A 240-cm sediment core was collected in the most impacted area in order to reconstruct the evolution of the marine ecosystem since the time of the breakwaters’ construction. Sediment grain size, physico-chemical parameters, nutrients and inorganic and organic contaminants were determined. The breakwaters have stopped coastal erosion but have given rise to a worsening of environmental quality. No impacts were detected outside the breakwaters. The integrated approach, using biogeochemical markers to reconstruct spatial and historical environmental trends within the sheltered area, proved to be very useful in highlighting its capacity for recovery and providing indications for coastal management.
Mostrar más [+] Menos [-]Comparative Measurements and their Compliance with Standards of Total Mercury Analysis in Soil by Cold Vapour and Thermal Decomposition, Amalgamation and Atomic Absorption Spectrometry
2013
Leiva G., Manuel A. | Morales Muñoz, Sandra | Segura, Rodrigo
Two methods to measure mercury concentration in soil are compared, and their compliance with international standards is determined: cold vapour atomic absorption spectrometry and thermal decomposition, amalgamation and atomic absorption spectrophotometry. The detection limit, quantification limit and uncertainty of these two analytical methods were evaluated and compared. The results indicated that thermal decomposition, amalgamation and atomic absorption spectrophotometry had a lower quantification limit and uncertainty than cold vapour atomic absorption spectrometry (quantification limit, 0.27 vs. 0.63 mg kg⁻¹; expanded uncertainty, 9.30 % vs. 10.8 %, respectively). Thermal decomposition, amalgamation and atomic absorption spectrophotometry allowed the determination of the base values for the concentration of mercury in soil recommended by international standards, achieving a lower detection limit than cold vapour atomic absorption spectrometry under the study conditions. In addition, thermal decomposition, amalgamation and atomic absorption spectrophotometry represent a more environmentally friendly alternative for mercury determination because this method uses fewer reagents and therefore generates less waste.
Mostrar más [+] Menos [-]Optimization of Process Parameters for Removal of Arsenic Using Activated Carbon-Based Iron-Containing Adsorbents by Response Surface Methodology
2013
Tuna, Aslı Özge Avcı | Özdemir, Ercan | Simsek, Esra Bilgin | Beker, Ulker
In this study, arsenate removal by apricot stone-based activated carbon (IAC) modified with iron (oxy-hydr)oxides was carried out. For this purpose, hybrid adsorbents based on Fe²⁺-loaded activated carbon (IAC–Fe(II)) and Fe³⁺-loaded activated carbon (IAC–Fe(III)) were synthesized by precipitation method. A three-level, three-factor Box–Behnken experimental design combined with response surface methodology (RSM) was employed to find the optimum combination of process parameters for maximizing the As(V) adsorption capacity of activated carbon-based iron-containing hybrid adsorbent. Three important operation parameters, namely, initial pH of solution (3.0–7.0), temperature (25–65 °C), and initial As(V) concentration (0.5–8.5 mg L⁻¹), were chosen as the independent variables, while the As(V) adsorption capacities of hybrid adsorbents were designated as dependent variables. Lack of fit test showed that the quadratic model provided the best fit to experimental data for both adsorbents with the highest coefficients of determination (R ²), adjusted R ², and p-values for lack of fit. The standardized effects of the independent variables and their interactions were tested by analysis of variance and Pareto chart. The model F-values (F IAC–Fₑ₍II₎=330.39 and F IAC–Fₑ₍III₎=36.19) and R ² values (R ² IAC–Fₑ₍II₎=0.9977 and R ² IAC–Fₑ₍III₎=0.9789) of second-order polynomial regression equations indicated the significance of the regression models. Optimum process conditions for As(V) adsorption onto IAC–Fe(II) were 63.68 °C, pH 3.10, and 8.4 mg L⁻¹ initial arsenic concentration, while 25.22 °C, pH 3.07, and 8.28 mg L⁻¹ initial As(V) concentration were found to be optimum conditions for IAC–Fe(III).
Mostrar más [+] Menos [-]Plant Responses to Arsenic: the Role of Nitric Oxide
2013
Farnese, Fernanda S. | de Oliveira, Juraci A. | Gusman, Grasielle S. | Leão, Gabriela A. | Ribeiro, Cleberson | Siman, Luhan I. | Cambraia, José
Arsenic (As) toxicity and the effects of nitric oxide (NO), supplied as sodium nitroprusside (SNP), were analyzed in Pistia stratiotes. The plants, which were grown in nutrient solution at pH 6.5, were exposed to four treatments for 24 h: control; SNP (0.1 mg L-1); As (1.5 mg L-1); and As + SNP (1.5 and 0.1 mg L-1). As accumulated primarily in the roots, indicating the low translocation factor of P. stratiotes. The As accumulation triggered a series of changes with increasing production of reactive oxygen intermediates and damage to cell membranes. The application of SNP was able to mitigate the harmful effects of As. This attenuation was probably due to the action of the SNP as an antioxidant, reducing the superoxide anion concentration, and as a signaling agent. Acting as a signal transducer, SNP increased the activity of enzymatic antioxidants (POX, CAT, and APX) in the leaves and stimulated the entire phytochelatins biosynthetic pathway in the roots (increased sulfate uptake and synthesis of amino acids, non-proteinthiols, and phytochelatins). The As also stimulated the phytochelatins biosynthesis, but this effect was limited, probably because plants exposed only to pollutant showed small increments in the sulfate uptake. Thus, NO also may be involved in gene regulation of sulfate carriers. © 2013 Springer Science+Business Media Dordrecht.
Mostrar más [+] Menos [-]Oxidative Degradation of EDTA in Aqueous Solution by the Bimetallic Fe–Cu
2013
Liu, Xin | Fan, Jin-Hong | Ma, Luming
Oxidative degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution at normal temperature and pressure by the bimetallic Fe–Cu was investigated in this work. The results showed that the removal efficiency of EDTA, total organic carbon (TOC), and total nitrogen (TN) could be about 95, 62.5, and 39 %, respectively, after 3-h reaction. The degradation of EDTA followed the pseudo-first-order reaction kinetics and would not be affected by the continuous use of bimetallic Fe–Cu. The degradation products were iminodiacetate, formate, and acetate determined by ion chromatogram. The effects of initial pH, initial concentration of EDTA, Cu content, Fe–Cu loading, and atmosphere were also investigated. Significantly, the bimetallic Fe–Cu process exhibited higher reactivity than ZEA process for the degradation of EDTA and it would not cause new heavy metal pollution in effluent. Reactive oxygen species (ROS) of OH was generated in situ. The evidence of oxidative degradation of EDTA was verified by electron spin resonance (ESR) spectroscopy and the product of para-hydroxybenzoic acid (p-HBA) by OH and benzoic acid (BA).
Mostrar más [+] Menos [-]