Refinar búsqueda
Resultados 1081-1090 de 7,995
Conversion and transformation of N species during pyrolysis of wood-based panels: A review Texto completo
2021
Xu, Deliang | Yang, Liu | Zhao, Ming | Zhang, Jinrui | Syed Shatir A. Syed-Hassan, | Sun, Hongqi | Hu, Xun | Zhang, Hong | Zhang, Shu
Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOₓ emission.
Mostrar más [+] Menos [-]Comparative growth and cellular responses of toxigenic Microcystis exposed to different types of microplastics at various doses Texto completo
2021
Wan, Qianruo | Li, Jieming | Chen, Yanran
Microplastics (MPs) pollution frequently co-occur with Microcystis-dominated blooms in freshwaters, but MPs effects on toxigenic Microcystis growth and effect mechanisms remained poorly understood. This study used 0.5 μm-size polyethylene (PE) and polyvinyl chloride (PVC) to explore dose- and time-dependent effects of single and combined MPs (i.e., PE + PVC) on toxigenic Microcystis growth and cellular responses during 16 day-test. Results showed that Microcystis growth and cellular responses depended on exposure time, MPs dose and type. MPs elicited hormesis effect in early stage at low dose (5 mg/L), while increasingly inhibited growth with rising PVC or PE + PVC dose but declining PE dose (5, 10, 50 mg/L) in mid-late stage, with stress intensity of PE + PVC > PVC > PE. Further analyses revealed unobvious cell damage under MPs stress, largely because antioxidases were increasingly activated as MPs stress enhanced. Unicellular MCs release ability during mid stage almost coincided with total/bound amount and each fraction of ex-poly and ex-pro trends under MPs stress. Significant positive relationship existed between MCs release ability and ex-poly/ex-pro fractions and total amount of Microcystis cells along mid-late stage under MPs stress, validating that ex-poly/ex-pro production was regulated as a result of MCs release. Besides, unicellular MCs production ability was generally positively correlated with soluble, tightly-bound and total ex-poly and ex-pro at late stage. These suggested that cellular antioxidants, MCs production/release ability and ex-poly/ex-pro production of Microcystis could be coupled to exert integrated defense against MPs stress to protect surviving cells in Microcystis population. These findings are crucial for acquiring the fate of Microcystis-dominated blooms co-occurring with MPs pollution, and reasonably assessing and managing involved eco-risks.
Mostrar más [+] Menos [-]Bisphenol F induces nonalcoholic fatty liver disease-like changes: Involvement of lysosome disorder in lipid droplet deposition Texto completo
2021
Wang, Jun | Yu, Pengfei | Xie, Xuexue | Wu, Linlin | Zhou, Manfei | Huan, Fei | Jiang, Lei | Gao, Rong
Epidemiological studies have demonstrated that the general population’s exposure to bisphenol A (BPA) substitutes is ubiquitous. Bisphenol F (BPF), one of the main BPA substitutes, is increasingly replacing BPA in plastics for food and beverage applications. Accumulating evidence suggests that BPA exposure is associated with nonalcoholic fatty liver disease (NAFLD)-like changes. However, the potential effects of BPF on lipid homeostasis remain poorly understood. In the present study, an epidemiological analysis with LC-MS-MS revealed that the BPF concentrations in the serum of NAFLD patients were significantly higher than those in a control group. Supporting this result, using Oil Red O, BODIPY 493/503, LipidTox Deep Red staining and gas chromatography-time-of-flight mass spectrometry (TOF-MS) assays, we found that BPF exposure induced NAFLD-like changes, with obvious lipid droplet deposition, triglyceride (TG) and fatty acids increase in mouse livers. Meanwhile, lipid droplet deposition and TG increase induced by BPF were also observed in HepG2 cells, accompanied by autophagic flux blockade, including autophagosome accumulation and the decreased degradation of SQSTM1/p62. Using adenoviruses dual-reporter plasmid RFP-GFP-LC3, RFP-GFP-PLIN2 transfection, AO staining, and EGFR degradation assays, we demonstrated that BPF treatment impaired lysosomal degradative capacity, since BPF treatment obviously impaired lysosomal acidification, manifested as decreased lysosomal hydrolase cathepsin L (CTSL) and mature cathepsin D (CTSD) in HepG2 and mouse liver issues. Additionally, v-ATPase D, a multi-subunit enzyme that mediates acidification of eukaryotic intracellular organelles, significantly decreased after BPF exposure in both the vitro and in vivo studies.This study ascertained a novel mechanism involving dysfunctional of lysosomal degradative capacity induced by BPF, which contributes to lipophagic disorders and causes lipid droplet deposition. This work provides evidence that lysosomes may be a target organelle where BPF exerts its potential toxicity; therefore, novel intervention strategies targeting lysosome are promising for BPF-induced NAFLD-like changes.
Mostrar más [+] Menos [-]Update on volatile organic compound (VOC) source profiles and ozone formation potential in synthetic resins industry in China Texto completo
2021
Ma, Yiran | Fu, Shaqi | Gao, Song | Zhang, Shuwei | Che, Xiang | Wang, Qiaoming | Jiao, Zheng
The synthetic resin industry plays an important role in Volatile organic compounds (VOCs) emissions from industrial sources. However, owing to various products and their different emission characteristics, it is extremely difficult to study the source profiles of synthetic resins. In this study, the product-based pollution characteristics of VOCs from eight synthetic resin enterprises were investigated in Shanghai, China. Up to 133 VOCs were identified, including 106 based on the Photochemical Assessment Monitoring Stations (PAMS) and the Toxic Organics (TO-15) methods, and the remaining 27 were identified based on the new mass spectrometry analysis method. Aromatics (39.7%) and oxygenated VOCs (29.9%) accounted for a relatively high proportion in the synthetic resin industry. The product-based source profiles of each process unit are compiled. Generally, 1,4-dioxane, methyl isobutyl ketone, toluene, benzene, styrene, propane, and dichloromethane are the most abundant species in synthetic resin. Furthermore, the product-based ozone formation potentials (OFPs) and sources reactivity (SR) were calculated, the synthetic resin industry SR range from 0.3 g g⁻¹ to 4.6 g g⁻¹. Results suggest that toluene, benzene, styrene, propylene, ethylene, and oxygenated VOCs (including 1,4-dioxane, methyl isobutyl ketone, and aldehyde) should be preferentially controlled to reduce the OFPs. A three-level classification was established to evaluate the degree of photochemical pollution in different industries. Emission factors were calculated and ranked for eight synthetic resins. A VOC emission inventory of Chinese synthetic resin from 2005 to 2018 was compiled. It is estimated that the Chinese synthetic resin emitted 23.96 Gg of VOCs in 2018. In this study, a product-based VOC source profile and emission inventory of the synthetic resin industry were established for the first time. Finally, combined with product types, processes, and processing equipment, feasible recommendations for reducing VOC emissions in the synthetic resin industry are proposed.
Mostrar más [+] Menos [-]Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation Texto completo
2021
Visentin, Caroline | Trentin, Adan William da Silva | Braun, Adeli Beatriz | Thomé, Antônio
Nanoscale zero-valent iron (nZVI) is the main nanomaterial used in environmental remediation processes. The present study aims to evaluate the life cycle sustainability of nZVI production methods applied in environmental remediation. Three production methods of nZVI were selected for analysis: milling, liquid reduction with sodium borohydride, and chemical reduction with hydrogen gas (in two approaches: considering the goethite and hematite synthesis and after using in nZVI production and, using goethite and hematite particles already synthesized for nZVI production). The life cycle sustainability assessment was carried out based on a multi-criteria and multi-attribute analysis. The multi-criteria analysis was used to determine impact category preferences of different specialists in sustainability and remediation, and calculate the sustainability score through a linear additive model. Finally, a Monte Carlo simulation was used to quantify the results uncertainty. The functional unit considered was 1.00 kg of nZVI produced. The milling method and the hydrogen gas method in approach considering the use goethite and hematite particles already synthesized were the most sustainable. Moreover, the sustainability index was found to be influenced by the considered location scenarios as well as the perspectives of the different specialists, which was essential in producing a more accurate and comprehensive evaluation of the aforementioned sustainability methods. Overall, this study significantly contributed to applications of the state-of-the-art life cycle sustainability assessment in studies regarding nanomaterials, employing a simple methodology that included an analysis of different specialists. In addition, this is the first article that uses life cycle sustainability assessment in nanomaterials.
Mostrar más [+] Menos [-]Distribution of antibiotic resistance genes in the environment Texto completo
2021
Zhuang, Mei | Achmon, Yigal | Cao, Yuping | Liang, Xiaomin | Ma, Yukun | Wang, Hui | Siame, Bupe A. | Leung, Ka Yin
The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990–2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the ‘omics’ tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.
Mostrar más [+] Menos [-]Using a land use regression model with machine learning to estimate ground level PM2.5 Texto completo
2021
Wong, Pei-Yi | Lee, Hsiao-Yun | Chen, Yu-Cheng | Zeng, Yu-Ting | Chern, Yinq-Rong | Chen, Nai-Tzu | Candice Lung, Shih-Chun | Su, Huey-Jen | Wu, Chih-Da
Ambient fine particulate matter (PM₂.₅) has been ranked as the sixth leading risk factor globally for death and disability. Modelling methods based on having access to a limited number of monitor stations are required for capturing PM₂.₅ spatial and temporal continuous variations with a sufficient resolution. This study utilized a land use regression (LUR) model with machine learning to assess the spatial-temporal variability of PM₂.₅. Daily average PM₂.₅ data was collected from 73 fixed air quality monitoring stations that belonged to the Taiwan EPA on the main island of Taiwan. Nearly 280,000 observations from 2006 to 2016 were used for the analysis. Several datasets were collected to determine spatial predictor variables, including the EPA environmental resources dataset, a meteorological dataset, a land-use inventory, a landmark dataset, a digital road network map, a digital terrain model, MODIS Normalized Difference Vegetation Index (NDVI) database, and a power plant distribution dataset. First, conventional LUR and Hybrid Kriging-LUR were utilized to identify the important predictor variables. Then, deep neural network, random forest, and XGBoost algorithms were used to fit the prediction model based on the variables selected by the LUR models. Data splitting, 10-fold cross validation, external data verification, and seasonal-based and county-based validation methods were used to verify the robustness of the developed models. The results demonstrated that the proposed conventional LUR and Hybrid Kriging-LUR models captured 58% and 89% of PM₂.₅ variations, respectively. When XGBoost algorithm was incorporated, the explanatory power of the models increased to 73% and 94%, respectively. The Hybrid Kriging-LUR with XGBoost algorithm outperformed the other integrated methods. This study demonstrates the value of combining Hybrid Kriging-LUR model and an XGBoost algorithm for estimating the spatial-temporal variability of PM₂.₅ exposures.
Mostrar más [+] Menos [-]Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax Texto completo
2021
Pinzone, Marianna | Cransveld, Alice | Tessier, Emmanuel | Bérail, Sylvain | Schnitzler, Joseph | Dāsa, Kr̥shṇā | Amouroux, David
Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax Texto completo
2021
Pinzone, Marianna | Cransveld, Alice | Tessier, Emmanuel | Bérail, Sylvain | Schnitzler, Joseph | Dāsa, Kr̥shṇā | Amouroux, David
Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ¹⁹⁹Hg and δ²⁰²Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination.We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ¹⁹⁹Hg and δ²⁰²Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs.The first important finding of this study showed an increase of both %MeHg and δ²⁰²Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ²⁰²Hg) and mass-independent (MIF, Δ¹⁹⁹Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0–1‰ and MIF, 0–0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass.Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study’s major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
Mostrar más [+] Menos [-]Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax Texto completo
2021
Pinzone, Marianna | Cransveld, Alice | Tessier, Emmanuel | Bérail, Sylvain | Schnitzler, Joseph | Das, Krishna | Amouroux, David | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ199Hg and δ202Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination. We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ199Hg and δ202Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs. The first important finding of this study showed an increase of both %MeHg and δ202Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0–1‰ and MIF, 0–0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass. Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study’s major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
Mostrar más [+] Menos [-]Polycyclic aromatic hydrocarbons in sedimentary cores of Tibetan Plateau: Influence of global warming on cold trapping Texto completo
2021
Wang, An-Ting | Li, Jun | Wang, Qi | Fang, Bin | Yuan, Guo-Li | Duan, Xu-Chuan
Cold condensation is an important pathway for polycyclic aromatic hydrocarbons (PAHs) depositing at remote alpine lakes after long-range atmospheric transportation. However, in the context of global warming, the obvious temperature rise in the Tibetan Plateau (TP) might have an impact on the air deposition of PAHs by controlling the extent of cold condensation. To investigate the influence of rising temperatures on the atmospheric deposition of PAHs, two dated sedimentary cores from Pumoyum Co Lake (PC) and Selin Co Lake (SC) were collected, respectively and concentrations of 16 individual PAHs were measured. In both PC and SC, the total concentration of 16 PAHs presented relatively lower levels in four historical periods of “hot anomaly” including 1973–1975, 1988–1989, 1998–1999, and 2006–2007. This indicated that the hot temperatures might restrict the atmospheric deposition of PAHs. Besides, the results of the principal component analysis did discriminate those “hot anomalies”. As the temperature kept increasing in TP, for low molecular weight PAHs and high molecular weight PAHs, the influence of rising temperatures on the cold condensation was different. Therefore, it was identified that the effect of global warming on the environmental fate of POPs cannot be neglected, especially in alpine regions like TP.
Mostrar más [+] Menos [-]Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals Texto completo
2021
Qu, Mingkai | Chen, Jian | Huang, Biao | Zhao, Yongcun
There must be some uncertainty in the remediation areas delineated based on limited sample points, and resampling in the high-uncertainty areas is particularly necessary. In situ field portable X-ray fluorescence spectrometry (FPXRF), a rapid and cheap analysis method for soil heavy metals, is strongly affected by many spatially non-stationary soil factors. This study first delineated the high-uncertainty area (threshold-exceeding probabilities (PTE) between 30% and 70%) of soil Pb based on the 1000 realizations produced by sequential Gaussian simulation (SGS) with 93 ICP-MS Pb concentrations measured in a peri-urban agriculture area, China. Next, in situ FPXRF was used to increase sample density in this high-uncertainty area. Then, robust geographically weighted regression (RGWR) was used to correct the in situ FPXRF Pb, and the correction accuracies of RGWR, basic GWR, and traditionally-used ordinary least squares regression (OLSR) were compared. Finally, to explore the best way to combine these corrected in situ FPXRF concentrations in delineating the remediation area, we compared the following spatial simulation methods: basic SGS, sequential Gaussian co-simulation (CoSGS) with the RGWR-corrected in situ FPXRF Pb as auxiliary soft data (CoSGS-CorFPXRF), and SGS with the RGWR-corrected in situ FPXRF Pb as part of hard data (SGS-CorFPXRF). Results showed that (i) RGWR produced higher correction accuracy (RI = 71.5%) than GWR (RI = 59.68%) and OLSR (RI = 25.58%) for the in situ FPXRF Pb; (ii) SGS-CorFPXRF produced less uncertainty (G = 0.97) than CoSGS-CorFPXRF (G = 0.95) and SGS (G = 0.91) in the spatial simulation; (iii) High-uncertainty area (30%<PTE<70%) was reduced from 36.55% to 8.7% of the whole study area. It is concluded that the recommended methods are cost-effective to reduce the uncertainty in delineating the remediation areas of soil heavy metals.
Mostrar más [+] Menos [-]