Refinar búsqueda
Resultados 1091-1100 de 5,149
Distribution patterns of organic pollutants and microbial processes in marine sediments across a gradient of anthropogenic impact Texto completo
2018
Zoppini, A. | Ademollo, N. | Patrolecco, L. | Langone, L. | Lungarini, S. | Dellisanti, W. | Amalfitano, S.
Marine sediments are part of the hydrological cycle and the ultimate storage compartment of land-derived organic matter, including pollutants. Since relevant microbially-driven processes occurring at benthic level may affect the quality of the overall aquatic system, the necessity for incorporating information about microbial communities functioning for ecosystem modelling is arising. The aim of this field study was to explore the links occurring between sediment contamination patterns by three selected class of organic pollutants (Polycyclic Aromatic Hydrocarbons, PAHs, Nonylphenols, NPs, Bisphenol A, BPA) and major microbial properties (Prokaryotic Biomass, PB; total living biomass, C-ATP; Prokaryotic C Production rate, PCP; Community Respiration rate, CR) across a gradient of anthropogenic pollution. Sediments were sampled from 34 sites selected along 700 km of the western coastline of the Adriatic Sea. Organic contamination was moderate (PAHs <830 ng g⁻¹; NPs <350 ng g⁻¹; BPA <38 ng g⁻¹) and decreased southward. The amount of PAHs-associated carbon (C-PAHs) increased significantly with sediment organic carbon (OC), along with microbial functional rates. The negative relation between PCP/CR ratio and OC indicated the shift toward oxidative processes in response to organic pollution and potential toxicity, estimated as Toxic Equivalents (TEQs). Our outcomes showed that sediment organic contamination and benthic microbial processes can be intimately linked, with potential repercussions on CO₂ emission rates and C-cycling within the detritus-based trophic web.
Mostrar más [+] Menos [-]Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture Texto completo
2018
Lima, Liana Bezerra Dias de | Morais, Paula Benevides de | Andrade, Ricardo Lopes Tortorela de | Mattos, Luciana Vieira | Moron, Sandro Estevan
This research aimed to evaluate the ecological risk of xenobiotics associated with agricultural activities by determining metal contents and biomarker responses using tucunaré (Cichla sp.) as a bioindicator. The work was conducted in the southwest region of the state of Tocantins, in the cities of Lagoa da Confusão and Pium. Water samples and specimens of Cichla sp. were collected in the Javaés and Formoso Rivers at three collection points (A, B and C). The concentrations of Cd, Pb, Cu, Cr, Mn, Ni and Zn in water and fish were analyzed. In fish, genotoxic, biochemical (glucose serum levels, AST (aspartate aminotransferase) and ALT (alanine aminotransferase) and histological (gills and liver) biomarkers were assessed. In the water, the Cr and Mn concentrations at the three collection points exceeded the values for Class 1 rivers. In the muscle, Cr was above the maximum limit allowed for human consumption at the three collection points, although the values at Points B and C were not significantly different from that at Point A (p > 0.05). At the three collection points, the micronucleus test revealed a low frequency of micronuclei. Significant hyperglycemia and a decrease in the AST activity of the fish collected at Point C was observed. In the gills, the most frequent alterations were at Stages I and II, which indicated mild to moderate damage, and epithelial detachment was the most frequent variation. In the liver tissue, the most frequently observed histological changes were at Stages I and II and included cytoplasmic vacuolization, nuclear hypertrophy, dilated sinusoids and bile stagnation. The integrated evaluation of these biomarkers indicated that fish collected from areas with intense agricultural activities presented adaptive responses that were likely caused by the availability and bioaccumulation of certain xenobiotics in the environment.
Mostrar más [+] Menos [-]Susceptibility of Chordodes nobilii (Gordiida, Nematomorpha) to three pesticides: Influence of the water used for dilution on endpoints in an ecotoxicity bioassay Texto completo
2018
Achiorno, Cecilia L. | de Villalobos, Cristina | Ferrari, Lucrecia
The increased use of pesticides during recent years necessitates a reevaluation of the effect of those compounds by extending the range of nontarget species commonly used in risk assessment. In the present work, we thus determined the impact of the pesticides glyphosate, carbendazim, and malathion on the parasite Chordodes nobilii in both natural and reconstituted freshwater as the assay medium and tested the sensitivity of three of this species's ecologically relevant parameters—e. g., embryo nonviablity and the infective capability of larvae exposed for 48 or 96 h either in ovo or after hatching via the infection index mean abundance—to compare those parameters to data from previous trials with reconstituted freshwater. In natural-freshwater assays, at environmentally relevant concentrations, all three pesticides inhibited the preparasitic-stage endpoints; with carbendazim being the most toxic pesticide and the subsequent infectivity of larvae exposed in ovo the most sensitive endpoint. In general, the 50%-inhibitory concentrations assayed in reconstituted freshwater were higher than those obtained in natural freshwater, indicating a certain protective effect; whereas the maximal toxicity of the three pesticides in both aqueous environments was essentially similar. The sensitivity of C. nobilii to these agents demonstrated that this species is one of the most susceptible to toxicity by all three pesticides. These findings with the assay methodology provide relevant information for a future assessment of the risk of toxicity to aquatic ecosystems and furthermore underscore the need to include parasitic organisms among the nontarget species canvassed. We also recommend that in the bioassays in which the risk assessment is carried out, water from a nontarget species's natural environment be used in parallel in order to obtain more conclusive results.
Mostrar más [+] Menos [-]The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway Texto completo
2018
Dou, Rong-Ni | Wang, Jing-Hao | Chen, Yuan-Cai | Hu, Yong-You
This study systematically explored the effect of humic acid (HA) (as model of natural organic matter) on the kinetics, products and transformation pathway of triclosan (TCS) by laccase-catalyzed oxidation. It was found that TCS could be effectively transformed by laccase-catalysis, with the apparent second-order rate constant being 0.056 U⁻¹ mL min⁻¹. HA inhibited the removal rate of TCS. HA-induced inhibition was negatively correlated with HA concentration in the range of 0–10 mg L⁻¹ and pH-dependent from 3.5 to 9.5. FT-IR and ¹³C NMR spectra showed a decrease of aromatic hydroxyl (phenolic) groups and an increase of aromatic ether groups, indicating the cross-linking of HA via C-O-C and C-N-C bonds during enzyme-catalyzed oxidation. Ten principle oxidative products, including two quinone-like products (2-chlorohydroquinone, 2-chloro-5-(2,4-dichlodichlorophenoxy)-(1,4)benzoquinone), one chlorinated phenol (2,4-dichlorophenol (2,4-DCP)), three dimers, two trimmers and two tetramers, were detected by gas chromatograghy/mass spectrometry (GC-MS) and high performance liquid chromatography/quadrupole time-of-flight/mass spectrometry (HPLC/Q-TOF/MS). The presence of HA induced significantly lesser generation of self-polymers and enhanced cross-coupling between HA and self-polymers via C-O-C, C-N-C and C-C coupling pathways. A plausible transformation pathway was proposed as follows: TCS was initially oxidized to form reactive phenoxyl radicals, which self-coupled to each other subsequently by C-C and C-O pathway, yielding self-polymers. In addition, the scission of ether bond was also observed. The presence of HA can promote scission of ether bond and further oxidation of phenoxyl radicals, forming hydroxylated or quinone-like TCS. This study shed light on the behavior of TCS in natural environment and engineered processes, as well provided a perspective for the water/wastewater treatment using enzyme-catalyzed oxidation techniques.
Mostrar más [+] Menos [-]Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition Texto completo
2018
Leoni, Cecilia | Pokorná, Petra | Hovorka, Jan | Masiol, Mauro | Topinka, Jan | Zhao, Yongjing | Křůmal, Kamil | Cliff, Steven | Mikuška, Pavel | Hopke, Philip K.
Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter <100 nm exhibit the highest deposition efficiency in human lungs. To permit apportionment of PM sources at the hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM₀.₀₉₋₁.₁₅ chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM₀.₀₉₋₁.₁₅ revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM₁ were found to be associated with coal combustion factor.
Mostrar más [+] Menos [-]Effects of pristine polyvinyl chloride fragments on whole body histology and protease activity in silver barb Barbodes gonionotus fry Texto completo
2018
Romano, Nicholas | Ashikin, Munirah | Teh, Jun Chin | Syukri, Fadhil | Karamī, ʻAlī
Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5–1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
Mostrar más [+] Menos [-]Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota Texto completo
2018
Cai, Minmin | Ma, Shiteng | Hu, Ruiqi | Tomberlin, Jeffery K. | Yu, Chan | Huang, Yongping | Zhan, Shuai | Li, Wu | Zheng, Longyu | Yu, Ziniu | Zhang, Jibin
Antibiotics can effectively protect livestock from pathogen infection, but residual antibiotics in manure bring risks to ecosystems and public health. Here, we demonstrated that black soldier fly larvae (BSFL) could provide an environmentally friendly manure treatment based on their ability to effectively and rapidly degrade tetracycline (TC). Investigation of the biological mechanisms and degradation pathways of TC by BSFL indicated that nearly 97% of TC was degraded within 12 days in a non-sterile BSFL treatment system, which is up to 1.6-fold faster than that achieved by normal composting. Our results showed that rapid TC-degradation was largely carried out by the intestinal microbiota of the larvae, which doubled the TC-degradation rates compared to those achieved in sterile BSFL systems. This conclusion was further supported by highly-efficient TC-biodegradation both in vivo and in vitro by four larval intestinal isolates. Moreover, detailed microbiome analysis indicated that intestinal bacterial and fungal communities were modified along with significantly increased tet gene copy number in the gut, providing the means to tolerate and degrade TC. Through analysis of TC degradation in vitro, four possible biodegradation products, two hydrolysis products and three conceivable inactivation products were identified, which suggested TC degradation reactions including hydrolysis, oxygenation, deamination, demethylation, ring-cleavage, modification, etc. In conclusion, our studies suggested an estimation of the fate of TC antibiotics in manure treatment by BSFL colonized by gut microbes. These results may provide a strategy for accelerating the degradation of antibiotics by adjusting the intestinal microbiota of BSFL.
Mostrar más [+] Menos [-]Allocation of glycerolipids and glycerophospholipids from adults to eggs in Daphnia magna: Perturbations by compounds that enhance lipid droplet accumulation Texto completo
2018
Fuertes, Inmaculada | Jordão, Rita | Casas, Josefina | Barata, Carlos
Analysis of the disruptive effects of chemicals on lipids in invertebrates is limited by our poor knowledge of the lipid metabolic pathways and the complete lipidome. Recent studies shown that juvenoids and bisphenol A disrupted the dynamics of lipid droplets in the crustacean Daphnia magna. This study used ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) to study how juvenoids (pyriproxyfen and methyl farnesoate) and bisphenol A disrupt the dynamics of glycerophospholipids and glycerolipids in Daphnia adults and their allocation to eggs. Lipidomic analysis identified 234 individual lipids corresponding to three classes of glycerolipids, seven of glycerophospholipids, and one of sphingolipids, of which 194 changed according to the chemical treatments and time. Adult females in the control and bisphenol A treatment groups had low levels of triacylglycerols but high levels of glycerophospholipids, whereas those in the juvenoid treatment groups had high levels of triacylglycerols and low levels of glycerophospholipids. The opposite trend was observed for the lipid contents in the eggs produced. Because the juvenoids reduced reproduction dramatically, the females allocated less triacylglycerols to their eggs than the controls did. Interestingly, females exposed to bisphenol A allocated less triacylglycerols to their eggs despite producing a similar number of eggs as that of the controls. Thin-layer chromatography analyses confirmed the UHPLC/TOFMS results and allowed qualitative determination of cholesterol, which was also accumulated in females exposed to the juvenoids.
Mostrar más [+] Menos [-]Levels and risk assessment of hydrocarbons and organochlorines in aerosols from a North African coastal city (Bizerte, Tunisia) Texto completo
2018
Barhoumi, Badreddine | Castro-Jiménez, Javier | Guigue, Catherine | Goutx, Madeleine | Sempéré, Richard | Derouiche, Abdelkader | Achour, Amani | Touil, Soufiane | Driss, Mohamed Ridha | Tedetti, Marc
The aim of this study was to assess, for the first time, the concentrations, sources, dry deposition and human health risks of polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in total suspended particle (TSP) samples collected in Bizerte city, Tunisia (North Africa), during one year (March 2015–January 2016). Concentrations of PAHs, AHs, PCBs and OCPs ranged 0.5–17.8 ng m−3, 6.7–126.5 ng m−3, 0.3–11 pg m−3 and 0.2–3.6 pg m−3, respectively, with higher levels of all contaminants measured in winter. A combined analysis revealed AHs originating from both biogenic and petrogenic sources, while diesel vehicle emissions were identified as dominant sources for PAHs. PCB potential sources included electronic, iron, cement, lubricant factories located within or outside Bizerte city. The dominant OCP congeners were p,p′-DDT and p,p′-DDE, reflecting a current or past use in agriculture. Health risk assessment showed that the lifetime excess cancer risk from exposure to airborne BaP was negligible in Bizerte, except in winter, where a potential risk to the local population may occur.
Mostrar más [+] Menos [-]Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: A case study with the mussel Mytilus galloprovincialis Texto completo
2018
Glyphosate (GLY) is one of the most used herbicide worldwide. Considering that information concerning the impact of GLY on bivalves is scarce, in this study we evaluated for the first time the effects of environmentally realistic concentrations of GLY (10, 100 and 1000 μg/L) to the mussel Mytilus galloprovincialis. Mussels were exposed for 7, 14 and 21 days and several biomarkers were measured in haemocytes/haemolymph (total haemocyte counts, haemocyte diameter and volume, haemolymph pH, haemolymph lactate dehydrogenase activity, haemocyte lysate lysozyme and acid phosphatase activities), as well as in gills and digestive gland (antioxidant enzyme and acetylcholinesterase activities). The concentrations of GLY and its main metabolite aminomethylphosphonic acid in the experimental tanks were also measured. The MANOVA analysis demonstrated that the experimental variables considered (exposure concentration, exposure duration, and their interaction) affected significantly biomarker responses. In addition, the two-way ANOVA analysis indicated that GLY was able to affect most of the cellular parameters measured, whereas antioxidant enzyme activities resulted to be influenced moderately. Interestingly, exposure to GLY reduced significantly acetylcholinesterase activity in gills. Although preliminary, the results of this study demonstrated that GLY can affect both cellular and biochemical parameters in mussels, highlighting a potential risk for aquatic invertebrates.
Mostrar más [+] Menos [-]