Refinar búsqueda
Resultados 1101-1110 de 7,288
Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury Texto completo
2022
Jin, Han | Riaz Rajoka, Muhammad Shahid | Xu, Xiaoguang | Liao, Ning | Pang, Bing | Yan, Lu | Liu, Guanwen | Sun, Hui | Jiang, Chunmei | Shao, Dongyan | Barba, Francisco J. | Shi, Junling
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
Mostrar más [+] Menos [-]Size-dependent in vitro inhalation bioaccessibility of PAHs and O/N PAHs - Implications to inhalation risk assessment Texto completo
2022
Besis, Athanasios | Gallou, Domniki | Avgenikou, Anna | Serafeim, Eleni | Samara, Constantini
Size segregated samples (<0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2 and > 7.2 μm) of atmospheric particulate matter (APM) were collected at a traffic site in the urban agglomeration of Thessaloniki, northern Greece, during the cold and the warm period of 2020. The solvent-extractable organic matter was analyzed for selected organic contaminants including polycyclic aromatic hydrocarbons (PAHs), and their nitro- and oxy-derivarives (NPAHs and OPAHs, respectively). Mean concentrations of ∑₁₆PAHs, ∑₆NPAHs and ∑₁₀OPAHs associated to total suspended particles (TSP) were 18 ng m⁻³, 0.2 ng m⁻³ and 0.9 ng m⁻³, respectively, in the cold period exhibiting significant decrease (6.4, 0.2 and 0.09 ng m⁻³, respectively) in the warm period. The major amount of all compounds was found to be associated with the alveolar particle size fraction <0.49 μm. The inhalation bioaccessibility of PAHs and O/N PAHs was measured in vitro using two simulated lung fluids (SLFs), the Gamble's solution (GS) and the artificial lysosomal fluid (ALF). With both SLFs, the derived bioaccessible fractions (BAFs) followed the order PAHs > OPAHs > NPAHs. Although no clear dependence of bioaccessibility on particle size was obtained, increased bioaccessibility of PAHs and PAH derivatives in coarse particles (>7.2 μm) was evident. Bioaccessibility was found to be strongly related to the logKOW and the water solubility of individual compounds hindering limited mobilization of the most hydrophobic and less water-soluble compounds from APM to SLFs. The lifetime cancer risk due to inhalation exposure to bioaccessible PAHs, NPAHs and OPAHs was estimated and compared to those calculated from the particulate concentrations of organic contaminants.
Mostrar más [+] Menos [-]Exacerbation of copper pollution toxicity from ocean acidification: A comparative analysis of two bivalve species with distinct sensitivities Texto completo
2022
Cao, Ruiwen | Zhang, Yiling | Ju, Yuhao | Wang, Wei | Xi, Chenxiang | Liu, Wenlin | Liu, Kai
Exacerbation of copper pollution toxicity from ocean acidification: A comparative analysis of two bivalve species with distinct sensitivities Texto completo
2022
Cao, Ruiwen | Zhang, Yiling | Ju, Yuhao | Wang, Wei | Xi, Chenxiang | Liu, Wenlin | Liu, Kai
In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO₂ and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bioaccumulation in acidified seawater. This was carried out by evaluating the effects of Cu exposure on two bivalve species (clams and scallops) for 28 d, at a series of gradient pH levels (pH 8.1, 7.8, and 7.6). The results demonstrated an increase in the Cu content in the soft tissues of clams and scallops in acidified seawater. Cu toxicity increased under acidified seawater by affecting the molecular pathways, physiological function, biochemical responses, and health status of clams and scallops. An iTRAQ-based quantitative proteomic analysis showed increased protein turnover, disturbed cytoskeleton and signal transduction pathways, apoptosis, and suppressed energy metabolism pathways in the clams and scallops under joint exposure to ocean acidification and Cu. The integrated biomarker response results suggested that scallops were more sensitive to Cu toxicity and/or ocean acidification than clams. The proteomic results suggested that the increased energy metabolism and suppressed protein turnover rates may contribute to a higher resistivity to ocean acidification in clams than scallops. Overall, this study provides molecular insights into the distinct sensitivities between two bivalve species from different habitats under exposure to ocean acidification and/or Cu. The findings emphasize the aggravating impact of ocean acidification on Cu toxicity in clams and scallops. The results show that ocean acidification and copper pollution may reduce the long-term viability of clams and scallops, and lead to the degradation of estuarine ecosystems.
Mostrar más [+] Menos [-]Seawater carbonate chemistry and molecular pathways, physiological function, biochemical responses, and health status of clams and scallops Texto completo
2022
Cao, Ruiwen | Zhang, Y | Ju, Yuhao | Wang, Wei | Xi, Chenxiang | Liu, Wenlin | Liu, Kai
In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO2 and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bioaccumulation in acidified seawater. This was carried out by evaluating the effects of Cu exposure on two bivalve species (clams and scallops) for 28 d, at a series of gradient pH levels (pH 8.1, 7.8, and 7.6). The results demonstrated an increase in the Cu content in the soft tissues of clams and scallops in acidified seawater. Cu toxicity increased under acidified seawater by affecting the molecular pathways, physiological function, biochemical responses, and health status of clams and scallops. An iTRAQ-based quantitative proteomic analysis showed increased protein turnover, disturbed cytoskeleton and signal transduction pathways, apoptosis, and suppressed energy metabolism pathways in the clams and scallops under joint exposure to ocean acidification and Cu. The integrated biomarker response results suggested that scallops were more sensitive to Cu toxicity and/or ocean acidification than clams. The proteomic results suggested that the increased energy metabolism and suppressed protein turnover rates may contribute to a higher resistivity to ocean acidification in clams than scallops. Overall, this study provides molecular insights into the distinct sensitivities between two bivalve species from different habitats under exposure to ocean acidification and/or Cu. The findings emphasize the aggravating impact of ocean acidification on Cu toxicity in clams and scallops. The results show that ocean acidification and copper pollution may reduce the long-term viability of clams and scallops, and lead to the degradation of estuarine ecosystems.
Mostrar más [+] Menos [-]Distribution of rare earth elements (REEs) and their roles in plant growth: A review Texto completo
2022
Tao, Yue | Shen, Lu | Feng, Chong | Yang, Rongyi | Qu, Jianhua | Ju, Hanxun | Zhang, Ying
The increasing use of rare earth elements (REEs) in various industries has led to a rise in discharge points, thus increasing discharge rates, circulation, and human exposure. Therefore, REEs have received widespread attention as important emerging pollutants. This article thus summarizes and discusses the distribution and occurrence of REEs in the world's soil and water, and briefly introduces current REEs content analysis technology for the examination of different types of samples. Specifically, this review focuses on the impact of REEs on plants, including the distribution and fractionation of REEs in plants and their bioavailability, the effect of REEs on seed germination and growth, the role of REEs in plant resistance, the physiological and biochemical responses of plants in the presence of REEs, including mineral absorption and photosynthesis, as well as a description of the substitution mechanism of REEs competing for Ca in plant cells. Additionally, this article summarizes the potential mechanisms of REEs to activate endocytosis in plants and provides some insights into the mechanisms by which REEs affect endocytosis from a cell and molecular biology perspective. Finally, this article discusses future research prospects and summarizes current scientific findings that could serve as a basis for the development of more sustainable rare earth resource utilization strategies and the assessment of REEs in the environment.
Mostrar más [+] Menos [-]Nitric oxide-mediated alleviation of arsenic stress involving metalloid detoxification and physiological responses in rice (Oryza sativa L.) Texto completo
2022
Singh, Pradyumna Kumar | Chakrabarty, D. (Debasis) | Dwivedi, Sanjay | Kumar, Amit | Singh, S. P. (Surendra Pratap) | Sinam, Geetgovind | Niranjan, Abhishek | Singh, Poonam C. | Chatterjee, Sandipan | Majumdar, Dipanjali | Tiwari, Manish | Tripathi, Rudra Deo
Rice is a staple crop, and food chain contamination of arsenic in rice grain possesses a serious health risk to billions of population. Arsenic stress negatively affects the rice growth, yield and quality of the grains. Nitric oxide (NO) is a major signaling molecule that may trigger various cellular responses in plants. The protective role of NO during arsenite (AsIII) stress and its relationship with plant physiological and metabolic responses is not explored in detail. Exogenous NO, supplemented through the roots in the form of sodium nitroprusside, has been shown to provide protection vis-à-vis AsIII toxicity. The NO-mediated variation in physiological traits such as stomatal density, size, chlorophyll content and photosynthetic rate maintained the growth of the rice plant during AsIII stress. Besides, NO exposure also enhanced the lignin content in the root, decreased total arsenic content and maintained the activities of antioxidant isoenzymes to reduce the ROS level essential for protecting from AsIII mediated oxidative damage in rice plants. Further, NO supplementation enhanced the GSH/GSSG ratio and PC/As molar ratio by modulating PC content to reduce arsenic toxicity. Further, NO-mediated modulation of the level of GA, IAA, SA, JA, amino acids and phenolic metabolites during AsIII stress appears to play a central role to cope up with AsIII toxicity. The study highlighted the role of NO in AsIII stress tolerance involving modulation of metalloid detoxification and physiological pathways in rice plants.
Mostrar más [+] Menos [-]Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries Texto completo
2022
Zheng, Dongsheng | Yin, Guoyu | Liu, Min | Hou, Lijun | Yang, Yi | Liu, Xinran | Jiang, Yinghui | Chen, Cheng | Wu, Han
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Mostrar más [+] Menos [-]Use of poisoned baits against wildlife. A retrospective 17-year study in the natural environment of Extremadura (Spain) Texto completo
2022
Ibáñez-Pernía, Yolanda | Hernández-Moreno, David | Pérez-López, Marcos | Soler-Rodríguez, Francisco
Use of poisoned baits against wildlife. A retrospective 17-year study in the natural environment of Extremadura (Spain) Texto completo
2022
Ibáñez-Pernía, Yolanda | Hernández-Moreno, David | Pérez-López, Marcos | Soler-Rodríguez, Francisco
This study reports the results obtained from toxicological analyses of different types of baits referred to the laboratory of the Toxicology Area (Faculty of Veterinary Medicine, Cáceres, Spain) over a 17-year period (2002–2018). These baits were suspicious materials found in the environment of the region of Extremadura (Western Spain), where such malpractices are a problem to be addressed, as wide livestock farming and hunting activities are combined with a significant wealth of wildlife (especially birds of prey). A total of 246 baits, including 32 commercial chemical products to be used in baits, were analysed. Samples from 183 cases were received and classified according to the material used for their preparation and the toxic substance found. Overall, the most common bait consisted of meat preparations (56.3% of cases) intended to eliminate predators considered ‘annoying’ for livestock and hunting practices, such as carnivores and scavengers. It should be noted that contact baits (as fenthion-impregnated perches) were also detected (7.6%). Regarding the substances detected, anticholinesterase compounds (organophosphates and carbamates) were the most commonly used substances for the preparation of baits (detected in 85.3% of positive baits). Moreover, 8% of the positive baits presented more than one toxic substance in their composition. Due to the types of toxic compounds and the methods used to prepare the baits, this study shows that the malicious use of highly toxic substances in the environment to kill wildlife is a common and current issue and poses a serious risk to different species.
Mostrar más [+] Menos [-]Use of poisoned baits against wildlife. A retrospective 17-year study in the natural environment of Extremadura (Spain) Texto completo
2022
Ibáñez Pernía, Yolanda | Hernández Moreno, David | Pérez López, Marcos | Soler Rodríguez, Francisco | Universidad de Extremadura. Departamento de Sanidad Animal
En este estudio se presentan los resultados obtenidos de los análisis toxicológicos de diferentes tipos de cebos remitidos al laboratorio del Área de Toxicología (Facultad de Veterinaria, C'aceres, España) durante un periodo de 17 años (2002-2018). Estos cebos eran materiales sospechosos encontrados en el entorno de la región de Extremadura (oeste de España), donde este tipo de malas prácticas son un problema a abordar, ya que amplias actividades ganaderas y cinegéticas se combinan con una importante riqueza de fauna silvestre (especialmente aves rapaces). Un total de 246 cebos incluidos 32 productos químicos comerciales para su uso en cebos, fueron analizados. Se recibieron muestras de 183 casos recibidas y clasificadas según el material utilizado para su preparación y la sustancia tóxica encontrada. En conjunto, el cebo más común consistió en preparados cárnicos (56,3% de los casos) destinados a eliminar depredadores considerados "molestos" para la ganadería y la caza, como carnívoros y carroñeros. Cabe señalar que también se detectaron cebos de contacto (como perchas impregnadas de fentión) (7,6%). En cuanto a las sustancias detectadas, los compuestos anticolinesterásicos (organofosforados y carbamatos) fueron las sustancias más utilizadas para la preparación de cebos (detectados en el 85,3% de los cebos positivos). Además, el 8% de los cebos positivos presentaban más de una sustancia tóxica en su composición. Debido a los tipos de compuestos tóxicos y a los métodos utilizados para preparar los cebos, este estudio demuestra que el uso malintencionado de sustancias altamente tóxicas en el medio ambiente para matar fauna salvaje es un problema común y actual y supone un grave riesgo para diferentes especies. | This study reports the results obtained from toxicological analyses of different types of baits referred to the laboratory of the Toxicology Area (Faculty of Veterinary Medicine, C´aceres, Spain) over a 17-year period (2002–2018). These baits were suspicious materials found in the environment of the region of Extremadura (Western Spain), where such malpractices are a problem to be addressed, as wide livestock farming and hunting activities are combined with a significant wealth of wildlife (especially birds of prey). A total of 246 baits, including 32 commercial chemical products to be used in baits, were analysed. Samples from 183 cases were received and classified according to the material used for their preparation and the toxic substance found. Overall, the most common bait consisted of meat preparations (56.3% of cases) intended to eliminate predators considered ‘annoying’ for livestock and hunting practices, such as carnivores and scavengers. It should be noted that contact baits (as fenthion-impregnated perches) were also detected (7.6%). Regarding the substances detected, anticholinesterase compounds (organophosphates and carbamates) were the most commonly used substances for the preparation of baits (detected in 85.3% of positive baits). Moreover, 8% of the positive baits presented more than one toxic substance in their composition. Due to the types of toxic compounds and the methods used to prepare the baits, this study shows that the malicious use of highly toxic substances in the environment to kill wildlife is a common and current issue and poses a serious risk to different species. | • Junta de Extremadura y Fondo Europeo de Desarrollo Regional. Ayuda GR 18080 | peerReviewed
Mostrar más [+] Menos [-]Use of poisoned baits against wildlife. A retrospective 17-year study in the natural environment of Extremadura (Spain) Texto completo
2022
This study reports the results obtained from toxicological analyses of different types of baits referred to the laboratory of the Toxicology Area (Faculty of Veterinary Medicine, Cáceres, Spain) over a 17-year period (2002-2018). These baits were suspicious materials found in the environment of the region of Extremadura (Western Spain), where such malpractices are a problem to be addressed, as wide livestock farming and hunting activities are combined with a significant wealth of wildlife (especially birds of prey). A total of 246 baits, including 32 commercial chemical products to be used in baits, were analysed. Samples from 183 cases were received and classified according to the material used for their preparation and the toxic substance found. Overall, the most common bait consisted of meat preparations (56.3% of cases) intended to eliminate predators considered 'annoying' for livestock and hunting practices, such as carnivores and scavengers. It should be noted that contact baits (as fenthion-impregnated perches) were also detected (7.6%). Regarding the substances detected, anticholinesterase compounds (organophosphates and carbamates) were the most commonly used substances for the preparation of baits (detected in 85.3% of positive baits). Moreover, 8% of the positive baits presented more than one toxic substance in their composition. Due to the types of toxic compounds and the methods used to prepare the baits, this study shows that the malicious use of highly toxic substances in the environment to kill wildlife is a common and current issue and poses a serious risk to different species.
Mostrar más [+] Menos [-]Assessing the influence of sewage sludge and derived-biochar in immobilization and transformation of heavy metals in polluted soil: Impact on intracellular free radical formation in maize Texto completo
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Munir, Mehr Ahmed Mujtaba | Arif, Muhammad | Ahmed, Rafay | Song, Yu
As one of the most common ways to get rid of municipal waste, landfill leachate, waste with complicated compositions and high levels of contaminants, has become a significant threat to the world's environment. Here, the impact of sewage sludge (SS) and derived-biochar (SSB) amendments on the immobilization and potential mobility of heavy metals in a contaminated soil-plant system was investigated. The sequential fractionation findings showed that using SS-2%, SSB-2%, and SSBC-1% reduced the potential mobility of heavy metals while increasing the residual fraction in polluted soils. The translocation and bioconcentration factors showed that heavy metals were slightly transferred into shoots from roots and lowered accumulation in roots from contaminated soils. Fourier transform infrared (FTIR) and X-ray photoelectron spectrum (XPS) comprehensive characterization results indicated the significant role of applied amendments for heavy metals transformation from the exchangeable-soluble fractions to the least available form by lowering their mobility to confirm the adsorption-based complexes, which results in the surface adsorption of heavy metals with functional groups. The electron paramagnetic resonance (EPR) results indicated the dominance of reactive oxygen species (ROS) in the intracellular formation of hydroxyl radicals (•OH) in maize plant roots and shoots. ROS (•OH) generation plays a critical influence in the interaction between the physiological processes of plants and heavy metals. Moreover, all the amendments increased maize growth and biomass production. Our study suggests that alone and combined application of SS and SSB have great potential to remediate heavy metals contaminated soil for environmental sustainability.
Mostrar más [+] Menos [-]Seawater intrusion decreases the metal toxicity but increases the ecological risk and degree of treatment for coastal groundwater: An Indian perspective Texto completo
2022
Bhagat, Chandrashekhar | Manish Kumar, | Mahlknecht, Jürgen | Hdeib, Rouya | Mohapatra, Pranab Kumar
Contaminant vulnerability in the critical zones like groundwater (GW)-seawater (SW) continuum along the entire Gujarat coast was investigated for the first time through an extensive water monitoring survey. The prime focus of the study was to evaluate whether or not: i) seawater intrusion induced metal load translates to toxicity; ii) in the coastal groundwater, metal distribution follows the pattern of other geogenic and anthropogenic contaminants like NO₃- and F-; and iii) what future lies ahead pertaining to metal fate in association with saturation conditions of the coastal aquifers. The spatial distribution of contaminants depicts that the Gulf of Khambhat area is highly contaminated. Ecological risk assessment (ERA) indicates that the Gujarat coast is experiencing a high ecological risk compared to the southeast coast of India. Investigation results revealed that metals, pH, NO₃, and CO₃ are more vulnerable at the SW-GW mixing interface. An increase in pH is reflected in fewer ionic species of metals in the GW. Salinity ingress due to seawater intrusion (SWI) reduces the toxicities of all trace metals except Cu, attributed to the increase of Ca in GW, leading to dissociation of CuCO₃. Reactive species are dominant for Zn and Cd; and M-CO₃ ligands are dominant for Cu and Pb owing to the undersaturation of dolomite and calcite in the aquifer system. SWI tends to increase the metal load but the toxicity of metals varies with the density of industries, anthropogenic activities, changes in the mixing-induced saturation conditions, and intensive salt production across the coast. Multivariate analysis confirmed that the hydrogeochemical processes change due to GW-SW mixing and dictates over natural weathering. The ecological risk index (ERI) for the Arabian sea is experiencing moderate (300 ≥ ERI>150) to high ecological risk (ERI >600). Children population is likely to encounter a high health risk through ingestion and dermal exposure than adults. Overall, the study emphasizes the complexity of toxicity-related health impacts on coastal communities and suggests the dire need for frequent water monitoring along the coastal areas for quick realization of sustainable development goals.
Mostrar más [+] Menos [-]Oxic urban rivers as a potential source of atmospheric methane Texto completo
2022
Zhao, Feng | Zhou, Yongqiang | Xu, Hai | Zhu, Guangwei | Zhan, Xu | Zou, Wei | Zhu, Mengyuan | Kang, Lijuan | Zhao, Xingchen
Urban rivers play a vital role in global methane (CH₄) emissions. Previous studies have mainly focused on CH₄ concentrations in urban rivers with a large amount of organic sediment. However, to date, the CH₄ concentration in gravel-bed urban rivers with very little organic sediment has not been well documented. Here, we collected water samples from an oxic urban river (Xin'an River, China; annual mean dissolved oxygen concentration was 9.91 ± 1.99 mg L⁻¹) with a stony riverbed containing very little organic sediment. Dissolved CH₄ concentrations were measured using a membrane inlet mass spectrometer to investigate whether such rivers potentially act as an important source of atmospheric CH₄ and the corresponding potential drivers. The results showed that CH₄ was supersaturated at all sampling sites in the five sampling months. The mean CH₄ saturation ratio (ratio of river dissolved CH₄ concentration to the corresponding CH₄ concentration that is in equilibrium with the atmosphere) across all sampling sites in the five sampling months was 204 ± 257, suggesting that the Xin'an River had a large CH₄ emission potential. The CH₄ concentration was significantly higher in the downstream river than in the upstream river (p < 0.05), which suggested that human activities along the river greatly impacted the CH₄ level. Statistical analyses and incubation experiments indicated that algae can produce CH₄ under oxic conditions, which may contribute to the significantly higher CH₄ concentration in August 2020 (p < 0.001) when a severe algal bloom occurred. Furthermore, other factors, such as heavy rainfall events, dissolved organic carbon concentration, and water temperature, may also be vital factors affecting CH₄ concentration. Our study enhances the understanding of dissolved CH₄ dynamics in oxic urban rivers with very little organic sediment and further proposes feasible measures to control the CH₄ concentration in urban rivers.
Mostrar más [+] Menos [-]