Refinar búsqueda
Resultados 1141-1150 de 5,098
An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea
2018
Lee, Sang Yoon | Lee, Sunggyu | Choi, Minkyu | Kannan, Kurunthachalam | Moon, Hyo-Bang
Environmental contamination by siloxanes is a matter of concern due to their widespread consumption in personal care as well as industrial products and potential toxicity. Nevertheless, methods for simultaneous determination of cyclic and linear siloxanes in sediment are lacking. In this study, we developed an optimized analytical method to determine cyclic and linear siloxanes based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). This method was applied to determine concentrations of 19 siloxane compounds in surface and core sediments from industrialized bays in Korea to assess contamination status, spatial distribution, and historical trends. Total concentrations of siloxanes ranged from 15.0 to 11730 (mean: 712) ng/g dry weight, which were similar to or higher than those reported in other countries. The highest concentrations of siloxanes were found in rivers/streams that discharge into coastal waters and bays close to industrial complexes, indicating that industrial activities are major sources of siloxane contamination. Cyclic siloxanes such as D5 and D6 were predominant in surface and core sediments. A significant correlation existed between the concentrations of cyclic and linear siloxanes, suggesting similar sources in the marine coastal environment. The historical record of cyclic siloxanes in core sediments revealed a clear increasing trend since the 1970s. This finding is consistent with the history of local industrialization and global production of siloxanes. This is the first study of historical trends in siloxanes in the coastal environment.
Mostrar más [+] Menos [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Mostrar más [+] Menos [-]Relationship between bisphenol A exposure and attention-deficit/ hyperactivity disorder: A case-control study for primary school children in Guangzhou, China
2018
Li, Yanru | Zhang, Haibin | Kuang, Hongxuan | Fan, Ruifang | Cha, Caihui | Li, Guanyong | Luo, Zhiwei | Pang, Qihua
Bisphenol A (BPA) is an endocrine-disrupting chemical. Studies have shown that the exposure to BPA is associated with attention-deficit/hyperactivity disorder (ADHD) during adolescent development. However the direct clinical evidence is limited. To investigate the possible association between environmental BPA exposure and the altered behavior of children, a case-control study was conducted with children aged 6–12 years in Guangzhou, China. Two hundred fifteen children diagnosed with ADHD and 253 healthy children from Guangzhou were recruited as the case and control groups, respectively. Urinary BPA and 8-hydroxy-2′-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage) concentrations were determined by high-performance liquid chromatography/tandem spectrometry. The results showed that concentrations of urinary BPA for the case group were significantly higher than those for the control group (3.44 vs 1.70 μg/L; 4.63 vs 1.71 μg/g Crt. p < .001). A stepwise increase in the odds ratios for ADHD was observed with the increasing quartiles of children's urinary BPA (first quartile: reference category; second quartile adjusted OR: 1.79, 95% CI: 0.95–3.37; third quartile adjusted OR: 7.44, 95% CI: 3.91–14.1; fourth quartile adjusted OR: 9.41, 95% CI: 4.91–18.1). When the BPA levels were stratified by gender, the odds of ADHD among boys and girls increased significantly with urinary BPA concentrations (adjusted OR: 4.58, 95% CI: 2.84–7.37; adjusted OR: 2.83, 95% CI: 1.17–6.84). Urinary 8-OHdG concentrations in the ADHD children were significantly higher than those in the control group. Furthermore, the linear regression analysis results indicated that a significant relationship existed between BPA exposure and 8-OHdG levels (R = 0.257, p < .001). Our findings provide direct evidence that childhood BPA exposure may be related to ADHD and 8-OHdG concentrations for children. Moreover, BPA exposure could increase the higher occurrence of ADHD for boy than for girls.
Mostrar más [+] Menos [-]An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries
2018
Cabral, Ana Caroline | Stark, Jonathan S. | Kolm, Hedda E. | Martins, César C.
Sewage input and the relationship between chemical markers (linear alkylbenzenes and coprostanol) and fecal indicator bacteria (FIB, Escherichia coli and enterococci), were evaluated in order to establish thresholds values for chemical markers in suspended particulate matter (SPM) as indicators of sewage contamination in two subtropical estuaries in South Atlantic Brazil. Both chemical markers presented no linear relationship with FIB due to high spatial microbiological variability, however, microbiological water quality was related to coprostanol values when analyzed by logistic regression, indicating that linear models may not be the best representation of the relationship between both classes of indicators. Logistic regression was performed with all data and separately for two sampling seasons, using 800 and 100 MPN 100 mL⁻¹ of E. coli and enterococci, respectively, as the microbiological limits of sewage contamination. Threshold values of coprostanol varied depending on the FIB and season, ranging between 1.00 and 2.23 μg g⁻¹ SPM. The range of threshold values of coprostanol for SPM are relatively higher and more variable than those suggested in literature for sediments (0.10–0.50 μg g⁻¹), probably due to higher concentration of coprostanol in SPM than in sediment. Temperature may affect the relationship between microbiological indicators and coprostanol, since the threshold value of coprostanol found here was similar to tropical areas, but lower than those found during winter in temperate areas, reinforcing the idea that threshold values should be calibrated for different climatic conditions.
Mostrar más [+] Menos [-]Polyfluorinated iodine alkanes regulated distinct breast cancer cell progression through binding with estrogen receptor alpha or beta isoforms
2018
Song, Wenting | Liu, Qian S. | Sun, Zhendong | Yang, Xiaoxi | Zhou, Qunfang | Jiang, Guibin
Polyfluorinated iodine alkanes (PFIs) are a kind of emerging chemicals with endocrine disrupting effects. Based on the different binding preferences of PFIs to estrogen receptor alpha and beta isoforms (ERα and β), two representative PFIs, dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were selected to evaluate their effects on the proliferation of two kinds of breast cancer cells with different ERα/β expression levels, MCF-7 and T47D. The cell viability assay showed PFHxDI could cause higher cellular toxicity than did PFHxI in both MCF-7 and T47D. MCF-7 with relatively higher ERα/β expression ratio was more vulnerable to the cytotoxic treatments of PFHxI and PFHxDI when compared with T47D cells with relatively lower ERα/β expression ratio. EdU incorporation and cell cycle analysis revealed that, similar to 17β-estrodiol (E₂), non-cytotoxic levels of PFHxDI could significantly promote the proliferation of MCF-7 by increasing cell population at S phase (p < 0.01), while T47D proliferation was not influenced by PFHxI exposure due to cell cycle arrest at G2/M phase. The cellular responses caused by estrogenic PFIs were dominantly mediated by their preferential binding affinities for ER isoforms, which would be helpful in the accurate assessment for their potential influences on the breast cancer progression.
Mostrar más [+] Menos [-]Acute toxicity, bioconcentration, elimination and antioxidant effects of fluralaner in zebrafish, Danio rerio
2018
Jia, Zhong-Qiang | Liu, Di | Sheng, Cheng-Wang | Casida, John E. | Wang, Chen | Song, Ping-Ping | Chen, Yu-Ming | Han, Zhao-Jun | Zhao, Chun-Qing
Fluralaner is a novel isoxazoline insecticide which shows high insecticidal activity against parasitic, sanitary and agricultural pests, but there is little information about the effect of fluralaner on non-target organisms. This study reports the acute toxicity, bioconcentration, elimination and antioxidant response of fluralaner in zebrafish. All LC50 values of fluralaner to zebrafish were higher than 10 mg L⁻¹ at 24, 48, 72 and 96 h. To study the bioconcentration and elimination, the zebrafish were exposed to sub-lethal concentrations of fluralaner (2.00 and 0.20 mg L⁻¹) for 15 d and then held 6 d in clean water. The results showed medium BCF of fluralaner with values of 12.06 (48 h) and 21.34 (144 h) after exposure to 2.00 and 0.20 mg L⁻¹ fluralaner, respectively. In the elimination process, a concentration of only 0.113 mg kg⁻¹ was found in zebrafish on the 6th day after removal to clean water. After exposure in 2.00 mg L⁻¹ fluralaner, the enzyme activities of SOD, CAT, and GST, GSH-PX, CarE and content of MDA were measured. Only CAT and CarE activities were significantly regulated and the others stayed at a stable level compared to the control group. Meanwhile, transcriptional expression of CYP1C2, CYP1D1, CYP11A were significantly down-regulated at 12 h exposed to 2.00 mg L⁻¹ of fluralaner. Except CYP1D1, others CYPs were up-regulated at different time during exposure periods.Fluralaner and its formulated product (BRAVECTO®) are of low toxicity to zebrafish and are rapidly concentrated in zebrafish and eliminated after exposure in clean water. Antioxidant defense and metabolic systems were involved in the fluralaner-induced toxicity. Among them, the activities of CAT and CarE, and most mRNA expression level of CYPs showed fast response to the sub-lethal concentration of fluralaner, which could be used as a biomarker relevant to the toxicity.
Mostrar más [+] Menos [-]Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity
2018
Koppel, Darren J. | Adams, Merrin S. | King, Catherine K. | Jolley, Dianne F.
Metal contaminants are rarely present in the environment individually, yet environmental quality guidelines are derived from single-metal toxicity data. Few metal mixture studies have investigated more than binary mixtures and many are at unrealistically high effect concentrations to freshwater organisms. This study investigates the toxicity of five metals (Cd, Cu, Ni, Pb, and Zn) to the Antarctic marine microalgae Phaeocystis antarctica and Cryothecomonas armigera. Two mixtures were tested: (i) an equitoxic mixture of contaminants present at their single-metal EC10 concentrations, and (ii) an environmental mixture based on the ratio metal concentrations in a contaminated Antarctic marine bay.Observed toxicity, as chronic population growth rate inhibition, was compared to Independent Action (IA) and Concentration Addition (CA) predictions parameterised to use EC10 values. This allowed for the inclusion of metals with low toxicities. The biomarkers chlorophyll a fluorescence, cell size and complexity, and intracellular lipid concentrations were assessed to investigate possible mechanisms behind metal-mixture interactions.Both microalgae had similar responses to the equitoxic mixture: non-interactive by IA and antagonistic by CA. Toxicity from the environmental mixture was antagonistic by IA to P. antarctica; however, to C. armigera it was concentration-dependent with antagonism at low toxicities and synergism at high toxicities by both IA and CA. Differences in dissolved organic carbon production and detoxification mechanisms may be responsible for these responses and warrants further investigation.This study shows that mixture toxicity interactions can be ratio, species, and concentration dependent. The responses of the microalgae to different mixture ratios highlight the need to assess toxicity at environmentally realistic metal ratios. Parameterising IA and CA reference models to use EC10s allowed for the inclusion of metals at low effect concentrations, which may otherwise be ignored. Reference mixture models are generally suitable for predicting chronic toxicity of metals to these marine microalgae at environmentally realistic ratios and concentrations.
Mostrar más [+] Menos [-]Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate
2018
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Despite the efforts of the European Commission to implement measures that offset the detrimental effects of agricultural intensification, farmland bird populations continue to decline. Pesticide use has been pointed out as a major cause of decline, with growing concern about those agro-chemicals that act as endocrine disruptors. We report here on the effects of flutriafol, a ubiquitous systemic fungicide used for cereal seed treatment, on the physiology and reproduction of a declining gamebird. Captive red-legged partridges (Alectoris rufa; n = 11–13 pairs per treatment) were fed wheat treated with 0%, 20% or 100% of the flutriafol application rate during 25 days in late winter. We studied treatment effects on the reproductive performance, carotenoid-based coloration and cellular immune responsiveness of adult partridges, and their relationship with changes in oxidative stress biomarkers and plasma biochemistry. We also studied the effect of parental exposure on egg antioxidant content and on the survival, growth and cellular immune response of offspring. Exposed partridges experienced physiological effects (reduced levels of cholesterol and triglycerides), phenotypical effects (a reduction in the carotenoid-based pigmentation of their eye rings), and most importantly, severe adverse effects on reproduction: a reduced clutch size and fertile egg ratio, and an overall offspring production reduced by more than 50%. No effects on body condition or cellular immune response of either exposed adult or their surviving offspring were observed. These results, together with previous data on field exposure in wild partridges, demonstrate that seed treatment with flutriafol represents a risk for granivorous birds; they also highlight a need to improve the current regulation system used for foreseeing and preventing negative impacts of Plant Protection Products on wildlife.
Mostrar más [+] Menos [-]Perinatal exposure to low-dose decabromodiphenyl ethane increased the risk of obesity in male mice offspring
2018
Yan, Sen | Wang, Dezhen | Teng, Miaomiao | Meng, Zhiyuan | Yan, Jin | Li, Ruisheng | Jia, Ming | Yao, Chenyang | Sheng, Jing | Tian, Sinuo | Zhang, Renke | Zhou, Zhiqiang | Zhu, Wentao
Decabromodiphenyl Ethane (DBDPE), a kind of new brominated flame retardants (NBFRs) used to replace DecaBDE, has been frequently detected in the environment and human samples. In this study, we explored its toxic effects on male mouse offspring after perinatal exposure to DBDPE. During the perinatal period, pregnant ICR mice were exposed to DBDPE (100 μg/kg body weight) via oral gavage. After weaning, male offspring were fed on a low-fat diet and a high-fat diet, respectively. We measured and recorded body weight, liver weight, and epididymis fat mass, blood biochemical markers, metabolites changes in liver, and gene expression involved in lipid and glucose homeostasis. The results showed that perinatal exposure to DBDPE increased the risk of obesity in mouse offspring and affected triglyceride synthesis, bile secretion, purine synthesis, mitochondrial function and glucose metabolism, furthermore, the use of HFD feeding may further exacerbate these effects. All of these results show that early-life exposure to low doses of DBDPE can promote the development of metabolic dysfunction, which in turn induces obesity.
Mostrar más [+] Menos [-]Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – A Raman micro-spectroscopy study
2018
Ghosal, Sutapa | Chen, Michael | Wagner, Jeff | Wang, Zhong-Min | Wall, Stephen
Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance of chemical analysis in distinguishing between polymer and non-polymer residues.
Mostrar más [+] Menos [-]