Refinar búsqueda
Resultados 1151-1160 de 6,560
Metabolomic insights into the lasting impacts of early-life exposure to BDE-47 in mice Texto completo
2020
Li, Yuqian | Yu, Nanyang | Li, Meiying | Li, Kan | Shi, Wei | Yu, Hongxia | Wei, Si
Early-life exposure to toxicants may have lasting effects that adversely impact later development. Thus, although the production and use of a toxicant have been banned, the risk to previously exposed individuals may continue. BDE-47, a component of commercial penta-BDEs, is a persistent organic pollutant with demonstrated neurotoxicity. To investigate the persistent effects of BDE-47 and the mechanisms thereof, we employed a metabolomics approach to analyze the brain, blood and urine of mice exposed to BDE-47 for 28 days and then 3 months post-exposure. In the brain, BDE-47 was detectable just after exposure but was below the limit of detection (LOD) 3 months later. However, the metabolomic alterations caused by early-life exposure to BDE-47 persisted. Potential biomarkers related to these alterations included phosphatidylcholine, lysophosphatidylcholine, sphingomyelin and several amino acids and biogenic amines. The metabolic pathways involved in the response to BDE-47 in the brain were mainly those related to glycerophospholipid metabolism, sphingomyelin metabolism and neurotransmitter regulation. Thus, our study demonstrates the utility of metabolomics, as the omics most closely reflecting the phenotype, in exploring the mechanisms underlying the lasting effects induced by early-life BDE-47 exposure.
Mostrar más [+] Menos [-]High inter-species differences of 12378-polychlorinated dibenzo-p-dioxin between humans and mice Texto completo
2020
Dong, Zhaomin | Ben, Yujie | Li, Yu | Li, Tong | Wan, Yi | Hu, Jianying
Although huge interspecies differences in the response to dioxins have been acknowledged, toxic equivalency factors derived from rodent studies are often used to assess human health risk. To determine interspecies differences, we first developed a toxicokinetic model in humans by measuring dioxin concentrations in environmental and biomonitoring samples from Southern China. Significant positive correlations between dioxin concentrations in blood and age were observed for seven dioxin congeners, indicating an age-dependent elimination rate. Based on toxicokinetic models in humans, the half-lives of 15 dioxin congeners were estimated to be 1.60–28.55 years. In consideration that the highest contribution to total toxic equivalency in blood samples was by 12378-polychlorinated dibenzo-p-dioxin (P₅CDD), this study developed a physiologically based pharmacokinetic (PBPK) model of 12378-P₅CDD levels in the liver, kidney, and fat of C57/6J mice exposed to a single oral dose, and the half-life was estimated to be 26.1 days. Based on estimated half-lives in humans and mice, we determined that the interspecies difference of 12378-P₅CDD was 71, much higher than the default usually used in risk assessment. These results could reduce the uncertainty human risk assessment of 12378-P₅CDD, and our approach could be used to estimate the interspecies differences of other dioxin congeners.
Mostrar más [+] Menos [-]Activation of sulfite autoxidation with CuFe2O4 prepared by MOF-templated method for abatement of organic contaminants Texto completo
2020
Zhao, Xiaodan | Wu, Wenjing | Jing, Guohua | Zhou, Zuoming
Copper ferrite (denoted as CuFe₂O₄MOF), prepared via a complexation reaction to obtain bimetal–organic frameworks (Cu/Fe bi-MOFs), followed by a combustion process to remove the MOF template, is employed as a heterogeneous activator to promote sulfite autoxidation for the removal of organic contaminants. At pH 8.0, more than 80% of the recalcitrant organic contaminant iohexol (10 μM) can be removed within 2 min by the activation of sulfite (500 μM) with CuFe₂O₄MOF (0.1 g L⁻¹). CuFe₂O₄MOF exhibits more pronounced catalytic activity in accelerating sulfite autoxidation for iohexol abatement compared to that fabricated by hydrothermal and sol–gel combustion methods. Radical quenching studies suggest that the sulfate radical (SO₄•⁻) is the main reactive species responsible for iohexol abatement. The performance of CuFe₂O₄MOF/sulfite for iohexol abatement can be affected by several critical influencing factors, including the solution pH and the presence of humic acid, Cl⁻, and HCO₃⁻. The effect of the ionic strength and the results of the attenuated total reflectance–Fourier transform infrared (ATR–FTIR) analysis indicate that sulfite autoxidation in the presence of CuFe₂O₄MOF involves an inner-sphere interaction with the surface Cu(II) sites of CuFe₂O₄MOF. X-ray photoelectron spectroscopy (XPS) characterization suggests that the surface Cu(II)–Cu(I)–Cu(II) redox cycle is responsible for efficient SO₄•⁻ production from sulfite. Overall, CuFe₂O₄MOF can be considered an alternative activator for sulfite autoxidation for potential application in the treatment of organic-contaminated water.
Mostrar más [+] Menos [-]Early life exposure to air pollution, green spaces and built environment, and body mass index growth trajectories during the first 5 years of life: A large longitudinal study Texto completo
2020
de Bont, Jeroen | Hughes, Rachael | Tilling, Kate | Díaz, Yesika | de Castro, Montserrat | Cirach, Marta | Fossati, Serena | Nieuwenhuijsen, Mark | Duarte-Salles, Talita | Vrijheid, Martine
Urban environments are characterized by multiple exposures that may influence body mass index (BMI) growth in early life. Previous studies are few, with inconsistent results and no evaluation of simultaneous exposures. Thus, this study aimed to assess the associations between exposure to air pollution, green spaces and built environment characteristics, and BMI growth trajectories from 0 to 5 years. This longitudinal study used data from an electronic primary care health record database in Catalonia (Spain), including 79,992 children born between January 01, 2011 and December 31, 2012 in urban areas and followed until 5 years of age. Height and weight were measured frequently during childhood and BMI (kg/m²) was calculated. Urban exposures were estimated at census tract level and included: air pollution (nitrogen dioxide (NO₂), particulate matter <10 μm (PM₁₀) and <2.5 μm (PM₂.₅₎), green spaces (Normalized Difference Vegetation Index (NDVI) and % green space) and built environment (population density, street connectivity, land use mix, walkability index). Individual BMI trajectories were estimated using linear spline multilevel models with several knot points. In single exposure models, NO₂, PM₁₀, PM₂.₅, and population density were associated with small increases in BMI growth (e.g. β per IQR PM₁₀ increase = 0.023 kg/m², 95%CI: 0.013, 0.033), and NDVI, % of green spaces and land use mix with small reductions in BMI growth (e.g. β per IQR % green spaces increase = −0.015 kg/m², 95%CI: −0.026, −0.005). These associations were strongest during the first two months of life. In multiple exposure models, most associations were attenuated, with only those for PM₁₀ and land use mix remaining statistically significant. This large longitudinal study suggests that early life exposure to air pollution, green space and built environment characteristics may be associated with small changes in BMI growth trajectories during the first years of life, and that it is important to account for multiple exposures in urban settings.
Mostrar más [+] Menos [-]Evaluation of different forms of Egyptian diatomite for the removal of ammonium ions from Lake Qarun: A realistic study to avoid eutrophication Texto completo
2020
AbuKhadra, Moustafa R. | Eid, Mohamd Hamdy | Allam, Ahmed Aly | Ajarem, Jamaan S. | Almalki, Ahmed M. | Salama, Yasser
Three types of diatomite-based adsorbents—diatomaceous earth (DE), purified diatomite (PD), and diatomite@MgO/CaO (D@MgO) were used for adsorption decontamination of ammonium from Lake Qarun water (28.7 mg/L). The adsorption properties of the three diatomite-based adsorbents were evaluated by both batch and fixed-bed column adsorption studies. The kinetic results demonstrated removal percentages of 97.2%, 69.5%, and 100% using DE, PD, and D@MgO, respectively, at a 1 g/L adsorbent dosage. The adsorption results using DE and D@MgO showed the best fitness with pseudo-first-order kinetic and Langmuir isotherm models, while the obtained results using PD demonstrate better fitness with the Freunlidich model. The recognised fitting results with the pseudo-first-order model and estimated adsorption energies demonstrated physical uptake of ammonium by DE (5.93 kJ/mol), PD (4.05 kJ/mol), and D@MgO (7.81 kJ/mol). The theoretical maximum ammonium uptake capacity of DE, PD, and D@MgO were 63.16 mg/g, 59.5 mg/g, and 78.3 mg/g, respectively. Using synthetic adsorbents in a fixed-bed column system for treating ammonium ions in Lake Qarun water resulted in removal percentages of 57.4%, 53.3%, and 62.6% using a DE bed, PD bed, and D@MgO bed, respectively, after treating approximately 7.2 L of Lake Qarun water using a bed thickness of 3 cm, a flow rate of 5 mL/min, pH 8, and the determined ammonium concentration in Lake Qarun water (28.7 mg/L). The curves demonstrated breakthrough times of 900 min, 900 min, and 960 min for the DE bed, PD bed, and D@MgO bed, respectively, with 1440 min as the saturation time. The columns’ performances also were studied based on the Thomas model, the Adams-Bohart model, and the Yoon-Nelson model.
Mostrar más [+] Menos [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments Texto completo
2020
Hodson, P.V. | Wallace, S.J. | de Solla, S.R. | Head, S.J. | Hepditch, S.L.J. | Parrott, J.L. | Thomas, P.J. | Berthiaume, A. | Langlois, V.S.
Ecological risk assessments (ERAs) of polycyclic aromatic compounds (PACs), as single congeners or in mixtures, present technical challenges that raise concerns about their accuracy and validity for Canadian environments. Of more than 100,000 possible PAC structures, the toxicity of fewer than 1% have been tested as individual compounds, limiting the assessment of complex mixtures. Because of the diversity in modes of PAC action, the additivity of mixtures cannot be assumed, and mixture compositions change rapidly with weathering. In vertebrates, PACs are rapidly oxygenated by cytochrome P450 enzymes, often to metabolites that are more toxic than the parent compound. The ability to predict the ecological fate, distribution and effects of PACs is limited by toxicity data derived from tests of a few responses with a limited array of test species, under optimal laboratory conditions. Although several models are available to predict PAC toxicity and rank species sensitivity, they were developed with data biased by test methods, and the reported toxicities of many PACs exceed their solubility limits. As a result, Canadian Environmental Quality Guidelines for a few individual PACs provide little support for ERAs of complex mixtures in emissions and at contaminated sites. These issues are illustrated by reviews of three case studies of PAC-contaminated sites relevant to Canadian ecosystems. Interactions among ecosystem characteristics, the behaviour, fate and distribution of PACs, and non-chemical stresses on PAC-exposed species prevented clear associations between cause and effect. The uncertainties of ERAs can only be reduced by estimating the toxicity of a wider array of PACs to species typical of Canada’s diverse geography and environmental conditions. Improvements are needed to models that predict toxicity, and more field studies of contaminated sites in Canada are needed to understand the ecological effects of PAC mixtures.
Mostrar más [+] Menos [-]Effects of two little-studied environmental pollutants on early development in anurans Texto completo
2020
Bókony, Veronika | Verebélyi, Viktória | Ujhegyi, Nikolett | Mikó, Zsanett | Nemesházi, Edina | Szederkényi, Márk | Orf, Stephanie | Vitányi, Evelin | Móricz, Ágnes M.
Despite intensive ecotoxicological research, we still know relatively little about the ecological impacts of many environmental contaminants. Filling these knowledge gaps is particularly important regarding amphibians, because they play significant roles in freshwater and terrestrial ecosystems, and their populations are declining worldwide. In this study, we investigated two pollutants that have been poorly studied in ecotoxicology despite their widespread occurrence in surface waters: the herbicide terbuthylazine and the pharmaceutical drug carbamazepine. We exposed two anuran species throughout their larval development to each of two environmentally relevant concentrations of each pollutant, and recorded mortality and 17 sub-lethal endpoints up to several months after exposure. Mortality was low and unrelated to treatment. In agile frogs (Rana dalmatina), we found that treatment with 0.3 μg/L terbuthylazine decreased tadpole activity and reduced fat bodies in juveniles, whereas treatment with 50 μg/L carbamazepine decreased spleen size and increased spleen pigmentation. In common toads (Bufo bufo), treatment with 0.003 μg/L terbuthylazine increased body mass at metamorphosis, treatment with 0.3 μg/L terbuthylazine increased the size of optic tecta, and treatment with 0.5 μg/L carbamazepine decreased hypothalamus size. Treatment with 50 μg/L carbamazepine reduced the feeding activity of toad tadpoles, decreased their production of anti-predatory bufadienolide toxins, and increased their body mass at metamorphosis; juvenile toads in this treatment group had reduced spleen pigmentation. Neither treatments affected the time to metamorphosis, post-metamorphic body mass, or sex ratios significantly. These results show that environmental levels of both terbuthylazine and carbamazepine can have several sub-lethal effects on anurans, which may be detrimental to individual fitness and population persistence in natural conditions. Our findings further highlight that toxic effects cannot be generalized between chemicals of similar structure, because the terbuthylazine effects we found do not conform with previously reported effects of atrazine, a related and extensively studied herbicide.
Mostrar más [+] Menos [-]Consecutive ultrafiltration and silica adsorption for recovery of extracellular antibiotic resistance genes from an urban river Texto completo
2020
Liu, Miaomiao | Hata, Akihiko | Katayama, Hiroyuki | Kasuga, Ikuro
The dissemination of antibiotic resistance (AR) has attracted global attention because of the increasing antibiotic treatment failure it has caused. Through natural transformation, a live bacterium takes up extracellular DNA (exDNA), which facilitates AR dissemination. However, recovery of exDNA from water samples is challenging. In this study, we validated a consecutive ultrafiltration-based protocol to simultaneously recover intracellular DNA (inDNA), dissolved exDNA (Dis_exDNA, dissolved in the bulk water), and adsorbed exDNA (Ads_exDNA, adsorbed to the surfaces of suspended particles). Using hollow fiber ultrafiltration (HFUF), all DNA fractions were concentrated from environmental water samples, after which Dis_exDNA (supernatant) was separated from inDNA and Ads_exDNA (pellets) using centrifugation. Ads_exDNA was washed off from the pellets with proteinase K and sodium phosphate buffer. Dis_exDNA and Ads_exDNA were further concentrated using centrifugal ultrafiltration, from which silica binding was performed. inDNA was extracted from washed pellets with a commercial kit. For inDNA, HFUF showed recovery efficiencies of 96.5 ± 18.5% and 88.0 ± 2.0% for total cells and cultured Escherichia coli, respectively (n = 3). To represent all possible DNA fragments in water environment, exDNA with different lengths (10.0, 4.0, 1.0, and 0.5 kbp) were spiked to test the recovery efficiencies for Dis_exDNA. The whole process achieved 62.2%–62.9% recovery for 10 and 4 kbp exDNA, and 38.8%–44.5% recovery for 1.0 and 0.5 kbp exDNA. Proteinase K treatment enhanced the recovery of Ads_exDNA by 4.0–10.7 times. The protocol was applied to water samples from an urban river in Tokyo, Japan. The abundance of AR genes (ARGs) in inDNA, Dis_exDNA, and Ads_exDNA increased downstream of wastewater treatment plants. ARGs in Ads_exDNA and Dis_exDNA accounted for 1.8%–26.7% and 0.03%–20.9%, respectively, of the total DNA, implying that Ads_exDNA and Dis_exDNA are nonnegligible potential pools for the horizontal transfer of ARGs.
Mostrar más [+] Menos [-]Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India Texto completo
2020
Narmatha Sathish, M. | Immaculate Jeyasanta, K. | Patterson, Jamila
Microplastics (MPs) in the marine environment are ubiquitous. The ingestion of these pollutants by marine organisms has drawn global attention. This work studies the distribution pattern and characteristics of MPs found in the body of the clam Donax cuneatus and its environment in order to understand the possible relationship between the MP concentration in the environment (water and sediment) and that in the clam’s body. Samples of D. cuneatus were collected from the coast between Vembar and Periyathazhai in Tuticorin district along GoM. MP concentrations range from 0.6 to 1.3 items/g (wet weight) in clams, 10–30 items/l in water, and 24–235 items/kg in sediment. Small-sized clams contain the highest concentration of MPs. Hence it is hypothesised that allometric relationship exists between body size and MP concentration, depending on the surface-area to volume ratio. MP abundance in clam body has a clear, positive, significant correlation with MP abundance in sediment but not with abundance of MP in water. Microplastics of fiber type with size 100–250 μm have a predominant presence in clams. The study identified ten types of polymers, of which polyethylene is the most common polymer in all sample types. FTIR-ATR spectra and surface morphology indicate that most of the microplastics have been strongly weathered. Energy dispersive X-ray spectroscopy analysis detected heavy metals associated with MPs like Cd, Pb, Cu, Zn, Ni and Fe. Filter-feeding clams like Donax sp. can provide valuable information on the spatial patterns of MP distribution, and so can act as bio-indicators in monitoring MP pollution in coastal areas.
Mostrar más [+] Menos [-]A hybrid kriging/land-use regression model with Asian culture-specific sources to assess NO2 spatial-temporal variations Texto completo
2020
Chen, Tsun-Hsuan | Xu, Yanjing | Zeng, Yu-Ting | Candice Lung, Shih-Chun | Su, Huey-Jen | Chao, Hsing Jasmine | Wu, Chih-Da
Kriging interpolation and land use regression (LUR) have characterized the spatial variability of long-term nitrogen dioxide (NO₂), but there has been little research on combining these two methods to capture small-scale spatial variation. Furthermore, studies predicting NO₂ exposure are almost exclusively based on traffic-related variables, which may not be transferable to Taiwan, a typical Asian country with diverse local emission sources, where densely distributed temples and restaurants may be important for NO₂ levels. To advance the exposure estimates in Taiwan, a hybrid kriging/LUR model incorporates culture-specific sources as potential predictors. Based on 14-year NO₂ observations from 73 monitoring stations across Taiwan, a set of interpolated NO₂ values were generated through a leave-one-out ordinary kriging algorithm, and this was included as an explanatory variable in the stepwise LUR procedures. Kriging interpolated NO₂ and culture-specific predictors were entered in the final models, which captured 90% and 87% of NO₂ variation in annual and monthly resolution, respectively. Results from 10-fold cross-validation and external data verification demonstrate robust performance of the developed models. This study demonstrates the value of incorporating the kriging-interpolated estimates and culture-specific emission sources into the traditional LUR model structure for predicting NO₂, which can be particularly useful for Asian countries.
Mostrar más [+] Menos [-]