Refinar búsqueda
Resultados 1161-1170 de 6,560
Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems Texto completo
2020
Yu, Hongwei | Zhang, Xiaoliang | Hu, Jingwen | Peng, Jianfeng | Qu, Jiuhui
Much attention is currently paid to microplastic (MP) pollution, particularly in marine systems. There is increasing concern regarding the potential toxicity of MPs to organisms at the physiological and morphological levels. However, little is known about the impact of MPs on aquatic life, despite their ubiquitous presence in freshwater ecosystems. In this study, the aquatic plant Utricularia vulgaris was exposed to 1, 2 and 5 μm polystyrene fluorescent MP particles at concentrations of 15, 70 and 140 mg/L for 7 days. The toxic effects of MPs on the growth rate and morphological and physiological characteristics of U. vulgaris were assessed. The results showed that the relative growth rates and the functional traits of leaves (morphological and photosynthetic) were significantly inhibited at a high concentration of MP particles (140 mg/L) when compared to the control group. The impacts on growth performance were likely due to bioaccumulation of MPs in the bladders, as shown by confocal microscopy. Furthermore, the antioxidative enzyme activities showed that high concentrations of MPs induce high ecotoxicity and oxidative damage to U. vulgaris. Thus, U. vulgaris has the potential to be an excellent bioindicator of MP pollution in freshwater ecosystems and should further be applied in ecological risk assessments of the effects of MPs on higher aquatic plants.
Mostrar más [+] Menos [-]Responses of soil and earthworm gut bacterial communities to heavy metal contamination Texto completo
2020
Liu, Peng | Yang, Yang | Li, Mei
The large accumulation of heavy metals in the soil surrounding steel factories has become a severe environmental problem. However, few studies have focused on how the earthworm gut microbiota responds to heavy metals in the soil. This study used research sites at a steel factory in Nanjing, China, to investigate how the soil bacterial community and earthworm gut microbiota respond differently to heavy metal contamination using Illumina high-throughput sequencing targeting 16S rRNA genes. The bacterial community of earthworm guts showed a distinct structure compared with that of the soil, featuring a higher relative abundance of Proteobacteria (45.7%) and Bacteroidetes (18.8%). The bacterial community in the earthworm gut appeared more susceptible to heavy metal contamination compared with the soil community. For example, we identified 38 OTUs (Operational taxonomic units) significantly influenced by contamination among 186 abundant OTUs in the soil, whereas 63 out of the 127 abundant OTUs in the earthworm gut were altered significantly under contamination. This susceptibility may be partly explained by the lower alpha diversity and distinct microbial interactions in the gut. In addition, the accumulation of heavy metals also stimulated the growth of potential plant growth promoting bacteria (PGPB) in the earthworm gut, especially those related to indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) production, which may potentially benefit the phyto-remediation of heavy metals. These results contribute to our understanding of the soil biota and its interactions under heavy metal contamination and may provide further insights into the phyto-remediation of metal-contaminated soil.
Mostrar más [+] Menos [-]Behavior of eukaryotic symbionts in large benthic foraminifers Calcarina gaudichaudii and Baculogypsina sphaerulata under exposure to wastewater Texto completo
2020
Akther, Shumona | Suzuki, Jumpei | Pokhrel, Preeti | Okada, Teruhisa | Imamura, Masahiro | Enomoto, Tadao | Kitano, Takashi | Kuwahara, Yuji | Fujita, Masafumi
Large benthic foraminifers (LBFs) are significant contributors to coral island formation in the Pacific Ocean. In recent years, the population of LBFs has decreased because of the increase in anthropogenic influences, such as wastewater (WW) discharge. To implement efficient mitigation measures, pollution tolerance in LBFs should be understood. However, the effects of WW on LBFs and their symbionts have not yet been demonstrated. This study examined the changes in the photosynthetic efficiency (Y[II]) of Calcarina gaudichaudii and Baculogypsina sphaerulata in response to WW by using a pulse-amplitude-modulation fluorometer. These LBFs were exposed to WW with different dilution levels for 22 days. The Y(II) values of the LBFs were found to deteriorate within 1–2 days. However, the Y(II) values both deteriorated and were enhanced in the experiments, thus indicating that WW contains both harmful and beneficial components. Baculogypsina sphaerulata showed an earlier response and greater sensitivity to WW and a higher epibiont infestation than C. gaudichaudii. This result can be attributed to the differences in the physiological and morphological responses of distinct LBFs. A sequencing analysis of 18S rDNA confirmed that the dominant eukaryotic symbionts in the two LBFs studied were Ochrophyta and Labyrinthulomycetes. These eukaryotic symbionts were released and attached as epibionts onto LBFs that were exposed to WW, thus leading to an increase in inactive LBFs. The Shannon–Weaver and Simpson diversity indices revealed that eukaryotic symbiont communities decreased in biodiversity after exposure to WW because of the abundance of algal symbionts. On the basis of these results, we conclude that WW, even with 10,000 × dilution, causes a decrease in active LBF populations owing to the release of eukaryotic symbionts, the decrease in biodiversity, and the infestation of epibionts even though Y(II) is temporarily enhanced. These responses are more significant in B. sphaerulata than in C. gaudichaudii.
Mostrar más [+] Menos [-]Removal of triphenyl phosphate by nanoscale zerovalent iron (nZVI) activated bisulfite: Performance, surface reaction mechanism and sulfate radical-mediated degradation pathway Texto completo
2020
Chen, Ruxia | Yin, Hua | Peng, Hui | Wei, Xipeng | Yu, Xiaolong | Xie, Danping | Lu, Guining | Dang, Zhi
Recently, sulfate radical-based advanced oxidation processes (SR-AOPs) have been studied extensively for the removal of pollutants, however, few researches focused on the activation of bisulfite by nanoscale zerovalent iron (nZVI), especially, surface reaction mechanism and sulfate radical-mediated degradation pathway have not been elucidated in detail. In this study, influencing factors, the kinetics, transformation pathway and mechanism of triphenyl phosphate (TPHP) degradation in the nZVI/bisulfite system were systematically discussed. Compared with Fe²⁺, nZVI was found to be a more efficient and long-lasting activator of bisulfite via gradual generation of iron ions. The optimal degradation efficiency of TPHP (98.2%) and pseudo-first-order kinetics rate constant (kₒbₛ = 0.2784 min⁻¹) were obtained by using 0.5 mM nZVI and 2.0 mM bisulfite at the initial pH 3.0. Both Cl⁻ and NO₃⁻ inhibited the degradation of TPHP and the inhibitory effect of Cl⁻ was stronger than that of NO₃⁻ due to the higher reaction rate of Cl⁻ with •SO₄⁻. Furthermore, SEM, XRD and XPS characterization revealed that a thin passivation layer (Fe₂O₃, Fe₃O₄, FeOOH) deposited on the surface of fresh nZVI and a few iron corrosion products generated and assembled on the surface of reacted nZVI. Radical quenching tests identified that •SO₄⁻ was the dominant reactive oxidative species (ROS) for TPHP removal. Based on HRMS analysis, six degradation products were determined and a sulfate radical-mediated degradation pathway was proposed. In a word, this study revealed that the nZVI/bisulfite system had a great potential for the TPHP elimination in waterbody.
Mostrar más [+] Menos [-]Acute and chronic exposure of the holometabolous life cycle of Aedes aegypti L. to emerging contaminants naproxen and propylparaben Texto completo
2020
Calma, Mayer L. | Medina, Paul Mark B.
Pharmaceuticals and personal care products (PPCPs) are a class of emerging contaminants commonly detected in environmental waters worldwide. Although reports about their detection in aquatic environments are increasing, limited studies show their effects on holometabolous insects. In this study, acute and chronic exposure to naproxen (0.02, 41, 82, 164, 382, 656, and 1312 mg L⁻¹) and propylparaben (0.02, 25, 50, 100, 250, 500, and 1000 mg L⁻¹) were evaluated in Aedes aegypti L. Acute exposure to naproxen (≥0.02 mg L⁻¹) and propylparaben (≥0.02 mg L⁻¹) reduced egg eclosion. Propylparaben (≥250 mg L⁻¹) caused significant larval mortality but naproxen did not even at the highest experimental concentration used. LC₅₀ for naproxen and propylparaben in larvae were 1100 mg L⁻¹ and 182.6 mg L⁻¹, respectively. Naproxen (≥0.02 mg L⁻¹) and propylparaben (≥0.02 mg L⁻¹) reduced pupation. Emergence was also reduced by naproxen (≥164 mg L⁻¹) and propylparaben (≥0.02 mg L⁻¹). The fecundity of females was significantly reduced due to chronic exposure to naproxen (≥0.02 mg L⁻¹). There was also a reduction in the fecundity of females due to chronic propylparaben exposure but it was statistically insignificant in the concentrations used. In the F1 generation eggs, only 100 mg L⁻¹ propylparaben reduced eclosion. Eclosion and larval survival were sensitive to acute exposure, particularly to propylparaben. The reduced pupation and emergence indicated a delay in the progression of the life cycle. Chronic exposure also indicated a reduction in fecundity. F1 eggs exhibited tolerance to the negative effect of subsequent exposure. Our findings suggest that propylparaben can affect Ae. aegypti more negatively than naproxen.
Mostrar más [+] Menos [-]Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India Texto completo
2020
Kaur, Lakhvinder | Rishi, Madhuri S. | Siddiqui, Azeem Uddin
Human interferences have caused groundwater contamination in alluvial aquifers which subsequently affects the health of exposed population. In the present study, 74 groundwater samples from the semi-arid region of Panipat district, falling under Yamuna sub-basin, India was evaluated to know the potential non-carcinogenic human health risk in local adult and child population. The major objective of the present study was to know the non-carcinogenic human health risk due to intake of fluoride and nitrate contaminated water, using two different approaches: deterministic and probabilistic (Monte Carlo simulation). The values of hazard quotient (HQ) determined by deterministic as well as probabilistic approach were nearly identical. The hazard index (HI) value of 40.8% samples was above the unity in case of adults while 69.7% samples indicated HI value greater than unity for children thus indicating children are more prone to non-carcinogenic health risk than the adult population. Sensitivity analysis was performed to identify the influence of the non-carcinogenic human health risk predictor variables for the prediction of risk and concentration factor (CF) was the most influential variable. Multivariate statistical techniques were employed to know the positive and negative relationship of fluoride and nitrate with other parameters. Results of principal component analysis/factor analysis (PCA/FA) indicated that the concentration of fluoride is controlled by the presence of calcium due to their negative correlation in groundwater samples. The hierarchical agglomerative cluster analysis (HCA) also supported the outcome of PCA/FA and both indicated anthropogenic sources of fluoride and nitrate in groundwater.
Mostrar más [+] Menos [-]Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio) Texto completo
2020
Liang, Xue-fang | Zhao, Yaqian | Liu, Wang | Li, Zhitong | Souders, Christopher L. | Martyniuk, Christopher J.
Butylated hydroxytoluene (BHT) is one of the most frequently used synthetic phenolic antioxidants added to food and consumer products such as plastics as a preservative. Due to its high production volume, BHT has been detected in aquatic environments, raising concerns about sub-lethal toxicity. However, there are limited toxicological data for BHT, especially in fish. In this study, zebrafish embryos were exposed to BHT at concentrations ranging 0.01–100 μM for up to 6 days post fertilization (dpf). Acute toxicity was assessed, and experiments revealed that BHT had a 96 h LC50 value of 57.61 μM. At sub-lethal doses (0.1–60 μM), BHT markedly decreased heart rates of zebrafish embryos at 48 h and 72 h by ∼25–30%. Basal and maximal respiration of zebrafish embryos at 24 hpf were decreased by 59.3% and 41.4% respectively following exposure to 100 μM BHT. Behavior in zebrafish was measured at 6 dpf following exposures to 0.01–10 μM BHT. Locomotor behaviors (e.g. total distance moved and velocity) were significantly increased in larvae at doses higher than 0.1 μM BHT. In addition, dark-avoidance behavior was decreased following exposure to 0.01 μM BHT, while conversely, it was increased in zebrafish exposed to 0.1 μM BHT. To investigate potential underlying mechanisms that could explain behavioral changes, transcripts involved in dopamine signaling were measured. Relative expression of dat mRNA was increased in larval fish from the 0.01 μM BHT treatment, while there were no effects on dat mRNA levels at higher concentrations. The mRNA levels of drd3 were decreased in zebrafish from the 1 μM BHT treatment. Taken together, BHT can affect the expression of the dopamine system, which is hypothesized to be related to the abnormal anxiety-associated behavior of larval zebrafish.
Mostrar más [+] Menos [-]Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey Texto completo
2020
He, Yisheng | Zhu, Lin | Ma, Jiang | Wong, Lailai | Zhao, Zhongzhen | Ye, Yang | Fu, Peter P. | Lin, Ge
Pyrrolizidine alkaloids (PAs) are common phytotoxins. We performed the first comprehensive investigation on PA contamination in Chinese honeys. LC-MS analysis revealed that 58% of 255 honey samples purchased from 17 regions across Mainland China and Taiwan contained PAs with total content ranging over 0.2–281.1 μg/kg. Monocrotaline (from Crotalaria spp), a PA never found in honey in other regions, together with echimidine (Echium plantagineum) and lycopsamine (from Senecio spp.), were three predominant PAs in PA-contaminated Chinese honeys. Further, PAs present in honeys were found to have geographically distinct pattern, indicating possible control of such contamination in future honey production. Moreover, we proposed a new risk estimation approach, which considered both content and toxic potency of individual PAs in honeys, and found that 12% of the PA-contaminated Chinese honeys tested might pose potential health risk. This study revealed a high prevalence and potential health risk of PA contamination in Chinese honeys.
Mostrar más [+] Menos [-]Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia Texto completo
2020
Singh, Atinderpal | Chou, Charles C.-K. | Chang, Shih-Yu | Chang, Shuenn-Chin | Lin, Neng-Huei | Chuang, Ming-Tung | Pani, Shantanu Kumar | Chi, Kai Hsien | Huang, Chiu-Hua | Lee, Chung-Te
This study examined the long-term trends in chemical components in PM₂.₅ (particulate matter with aerodynamic diameter ≤2.5 μm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003–2018. High ambient concentrations of PM₂.₅ and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (−0.67% yr⁻¹; p = 0.01), elemental carbon (−0.48% yr⁻¹; p = 0.18), and non–sea-salt (nss) K⁺ (−0.71% yr⁻¹; p = 0.04) during 2003–2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (−0.26% yr⁻¹; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO₃⁻ displayed an increasing trend (0.71% yr⁻¹; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (−1.04% yr⁻¹; p = 0.0001) during 2006–2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K⁺) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM₂.₅ chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.
Mostrar más [+] Menos [-]Transfer and transformation mechanisms of Fe bound-organic carbon in the aquitard of a lake-wetland system during reclamation Texto completo
2020
Liu, Rui | Ma, Teng | Lin, Chaohong | Chen, Juan | Lei, Kun | Liu, Xin | Qiu, Wenkai
Organic carbon (OC) can help control greenhouse gas emissions by participating in biogeochemical reactions and preventing the migration of contaminants in groundwater systems. The association of OC with Fe (Iron) oxide minerals plays a significant role in stabilizing OC and regulating the biogeochemical cycles of OC on the earth’s surface. Reclaiming farmland from lakes changes an original lake into a wetland, but the destiny of Fe bound-OC in the underlying aquitard during this process has been poorly understood. The mechanisms of migration and transformation of Fe bound-OC were investigated in subsurface aquitard sediments of three typical boreholes in the Chen Lake wetland, central China. The Fe bound-OC content in the natural sedimentary conditions (borehole A), transition area (borehole B), and intensive reclamation area (borehole C) were 0.17–3.87, 0.28–3.98 and 0.13–7.08 mg g⁻¹, respectively. The reclamation changed the redox, water, and infiltration conditions of the surface environment, resulting in a transformation of Fe oxides phases, and then cause the change of content and structure of Fe bound-OC. The fresh organic matter provided by undecomposed crops causes oxygen- and nitrogen-rich compounds to combine with Fe oxides extensively through adsorption, resulting in higher δ¹³C values of Fe bound-OC than non-Fe bound-OC. Fe bound-OC has strong resistance to biodegradation. The Fe bound-OC: total OC ratios generated by adsorption and coprecipitation on the surface layer (0 to −3.5 m) of borehole C was 10.37% and 18.86%, 6.92% and 12.46% higher than those of boreholes A and B, respectively. Coprecipitation has a stronger OC-binding ability and enriches more carboxylates and aromatics, while adsorption gradually assumed a dominant position in OC-Fe interaction in deep aquitard. The reduction dissolution of Fe oxide causes Fe bound-OC to transfer into pore water, leading to an increase of Fe ion and dissolved OC in deep strata.
Mostrar más [+] Menos [-]