Refinar búsqueda
Resultados 1171-1180 de 4,929
Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks
2019
Lu, Shaoyou | Wang, Ning | Ma, Shengtao | Hu, Xing | Kang, Li | Yu, Yingxin
This work aimed to determine the concentrations of parabens and triclosan (TCS) in shellfish from coastal waters of Shenzhen, South China. A method of isotope dilution with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine TCS and five paraben analogues, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), and benzyl paraben (BeP), in 186 shellfish samples covering eight species. Concentrations of parabens and TCS were 0.13–25.5 ng/g wet weight (ww) and <LOQ–6.51 ng/g ww, respectively, indicating their ubiquitous contamination in Shenzhen coastal waters. MeP was the most predominant paraben, followed by EtP and PrP. These three analogues accounted for more than 95% of the total concentrations of parabens. The “high” estimated daily intakes of parabens and TCS with the 95th percentage concentrations were estimated to be 2.15–26.1 and 0.41–10.3 ng/kg bw/day, respectively, much lower than the acceptable dietary intakes of parabens (1 × 10⁷ ng/kg bw/day) and TCS (200 ng/kg bw/day), indicating no significant human health risks from shellfish consumption in the studied region. To our knowledge, this is the first report on the occurrences of parabens and TCS in shellfish products from Shenzhen coastal waters.
Mostrar más [+] Menos [-]Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area
2019
Liu, Juan | Yin, Meiling | Zhang, Weilong | Tsang, Daniel C.W. | Wei, Xudong | Zhou, Yuting | Xiao, Tangfu | Wang, Jin | Dong, Xinjiao | Sun, Yubing | Chen, Yongheng | Li, Hui | Hou, Liping
Thallium (Tl) is a well-recognized hazardous heavy metal with very high toxicity. It is usually concentrated in sulfide minerals, such as pyrite (FeS₂), sphalerite (ZnS), chalcopyrite (CuS) and galena (PbS). Here, this study was carried out to investigate the indigenous microbial communities via 16S rRNA gene sequence analysis in typical surface sediments with various levels of Tl pollution (1.8–16.1 mg/kg) due to acid mine drainage from an active Tl-containing pyrite mining site in South China. It was found with more than 50 phyla from the domain Bacteria and 1 phyla from the domain Archaea. Sequences assigned to the genera Ferroplasma, Leptospirillum, Ferrovum, Metallibacterium, Acidithiobacillus, and Sulfuriferula manifested high relative abundances in all sequencing libraries from the relatively high Tl contamination. Canonical correspondence analysis further uncovered that the overall microbial community in this area was dominantly structured by the geochemical fractionation of Tl and geochemical parameters such as pH and Eh. Spearman's rank correlation analysis indicated a strong positive correlation between acidophilic Fe-metabolizing species and Tlₜₒₜₐₗ, Tlₒₓᵢ, and Tlᵣₑₛ. The findings clarify potential roles of such phylotypes in the biogeochemical cycling of Tl, which may facilitate the development of in-situ bioremediation technology for Tl-contaminated sediments.
Mostrar más [+] Menos [-]Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt)
2019
Olías, M. | Cánovas, C.R. | Basallote, M.D. | Macías, F. | Pérez-López, R. | González, R Moreno | Millán-Becerro, R. | Nieto, J.M.
In May 2017, a spill from La Zarza pit lake (SW Spain) resulted in the release of approximately 270,000 m3 of extremely acidic waters to the Odiel River. Around 780 × 103 kg of Fe, 170 × 103 kg of Al, 2.15 × 103 kg of As and high amounts of other trace metals and metalloids were spilled. The purpose of this study is to explain the causes, consequences and impacts of the mine spill on the receiving water bodies. To this end, an extensive sampling along the mine site, river and estuary as well as a hydrological model of the pit lake was performed. Around 53 km of the Odiel River's main course, which was already contaminated by acid mine drainage (AMD), were affected. The mine spill resulted in an incremental impact on the Odiel River water quality. Thus, dissolved concentrations of some elements increased in the river up to 450 times; e.g. 435 mg/L of Fe and 0.41 mg/L of As. Due to low pH values (around 2.5), most metals (e.g., Cu, Zn, Mn, Cd) were transported in the dissolved phase to the estuary, exhibiting a conservative behavior and decreasing their concentration only due to dilution. However, dissolved concentrations of Fe, Cr, Pb, Se, Sb, Ti, V and especially As decreased significantly along the river due to Fe precipitation and sorption/coprecipitation processes. At the upper zone of the estuary, a noticeable increment of metal concentrations (up to 77 times) was also recorded. The water balance illustrates the existence of groundwater inputs (at least 16% of total) to the pit lake, due probably to local infiltration of rainwater at the mining zone. The probable existence of an ancient adit connected to the pit lake indicates that potential releases could occur again if adequate prevention measures are not adopted.
Mostrar más [+] Menos [-]Dynamics and environmental importance of anaerobic ammonium oxidation (anammox) bacteria in urban river networks
2019
Zheng, Yanling | Hou, Lijun | Liu, Min | Yin, Guoyu
Anaerobic ammonium oxidation (anammox) is recognized as an important bioprocess for nitrogen removal, yet little is known about the associated microbial communities in urban river networks which are intensively disturbed by human activity. In the present study, we investigated the community composition and abundance of anammox bacteria in the urban river network of Shanghai, and explored their potential correlations with nitrogen removal activities and the environmental parameters. High biodiversity of anammox bacteria was detected in the sediment of urban river networks, including Candidatus Brocadia, Scalindua, Jettenia, and Kuenenia. Anammox bacterial abundance ranged from 3.7 × 10⁶ to 3.9 × 10⁷ copies g⁻¹ dry sediment based on 16S rRNA gene, which was strongly correlated to the metabolic activity of anammox bacteria (P < 0.01). A strong linkage between anammox bacteria and denitrifiers was detected (P < 0.05), implying a potential metabolic interdependence between these two nitrogen-removing microbes was existed in urban river networks. Sediment ammonium (NH₄⁺) made a significant contribution to the anammox bacterial community-environment relationship, while anammox bacterial abundance related significantly with sediment total organic carbon (TOC) and silt contents (P < 0.05). However, no statistically significant correlation was observed between cell-specific anammox rate and the measured environmental factors (P > 0.05). In general, the community composition and abundance of anammox bacteria in different hierarchies of the river network was homogeneous, without significant spatial variations (P > 0.05). These results provided an opportunity to further understand the microbial mechanism of nitrogen removal bioprocesses in urban river networks.
Mostrar más [+] Menos [-]Temporal-spatial analysis of crop residue burning in China and its impact on aerosol pollution
2019
Yu, Mengmeng | Yuan, Xiaolei | He, Qingqing | Yu, Yuhan | Cao, Kai | Yang, Yong | Zhang, Wenting
China has performed crop residue burning (CRB) for a long time and has suffered from resultant environmental pollution. High temporal resolution has not been fully discussed in attempts to address the temporal and spatial impact of CRB in China on air quality. Our study used the MOD14A1 product of the MODerate resolution Imaging Spectrometer (MODIS) to extract the daily CRB for China during the period from 2014 to 2016, and the daily aerosol optical depth (AOD) provided by MODIS Collection 6 was obtained to simultaneously reflect the air pollution. First, the study area was classified into five subregions. A temporal analysis was conducted on the daily variation in the number of CRB events and the regional mean value of AOD, the spatial contribution ratio of CRB on aerosol pollution was then calculated, and finally, a temporal and spatial Pearson correlation was calculated to find the spatially varying relationship between CRB and aerosol. The results suggest the following: (1) CRB possesses seasonal characteristics that are associated with the harvest time or sowing time of major crops in the region. (2) The impact of CRB on aerosol was delayed by 1–6 days. (3) High contribution ratios (70%–90%) occurred in northeast China on a large scale; even when the impact of the CRB on aerosol pollution in the Huang-Huai-Hai river basin occurred on a large scale, the value was merely approximately 30%. Relatively low contributions of CRB have been found in other places, whereas the contribution of CRB was severe in some places with high-density populations. (4) Temporal-spatial correlation provided an accurate index to reflect the correlation of CRB and aerosol in a specific location, which suggests that, in places with large scale and dense CRB, CRB tends to have a high positive correlation with aerosol pollution for each day.
Mostrar más [+] Menos [-]Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils
2019
Wu, Zhen | Song, Yanfeng | Shen, Haojie | Jiang, Xueyang | Li, Bo | Xiong, Zhengqin
Biochar application to fertilized paddy soils has been recommended as an effective countermeasure to mitigate methane (CH₄) emissions, but its mechanism and effective duration has not yet been adequately elucidated. A laboratory incubation experiment was performed to gain insight into the combined effects of fresh and six-year aged biochar on potential methane oxidation (PMO) in paddy soils with ammonium or nitrate-amendment. Results showed that both ammonium and nitrate were essential for CH₄ oxidation though high ammonium (4 mM) inhibited PMO as compared to low ammonium (1 mM and 2 mM), and that nitrate was better in promoting PMO than ammonium. Moreover, ammonium-amendment promoted type I pmoA, and nitrate-amendment enhanced type II pmoA abundance. Both fresh and aged biochar increased PMO as well as nitrification by enhancing the total, type I and type II methanotrophs as compared to the control. Increased soil PMO with mineral N input in both six-year aged biochar and fresh biochar amendment, indicating that biochar mitigated CH₄ by promoting PMO for prolonged period in fertilized paddy soils.
Mostrar más [+] Menos [-]The hydro-fluctuation belt of the Three Gorges Reservoir: Source or sink of microplastics in the water?
2019
Zhang, Kai | Chen, Xianchuan | Xiong, Xiong | Ruan, Yuefei | Zhou, Hane | Wu, Chenxi | Lam, Paul K.S.
Reservoirs can be an important environmental compartment for microplastic pollution. Previous investigations have found that surface waters and sediments in the Three Gorges Reservoir (TGR) have had high microplastic abundance, and the Xiangxi River, which is one of the largest primary tributaries of the TGR, has had much higher microplastic abundance than several marine and freshwater systems in China. A strip of land on the bank of the reservoir area, which is called the hydro-fluctuation belt (HFB), is periodically exposed due to the special hydrodynamic conditions in the TGR. The HFB may be an important source and/or sink of microplastics in TGR. In this study, microplastic occurrence in sediments from the Xiangxi River HFB was investigated to reflect the local microplastic pollution status and to evaluate its potential to serve as a source/sink of microplastics in the TGR. Seven sampling sites were selected, and sediments within the HFB and above the belt were collected in summer when the water level was low. The results showed that the microplastic abundance ranged from 0.55 ± 0.12 × 10³ to 14.58 ± 5.67 × 10³ particles m⁻², which was one to two orders of magnitude higher than that in sediments from the Xiangxi River in our previous study (80–846 particles m⁻²). Statistical analysis revealed that the microplastic abundance within the HFB was significantly higher than that of the area above the HFB. The results indicate that the HFB can be an important microplastic sink when the water level is low, and the belt can turn into a potential source when the water level is high. Cluster analysis was applied to reveal the characteristics of the microplastics collected at different sites, and the results suggest that the cluster analysis may be a useful tool in elucidating the source and fate of microplastics.
Mostrar más [+] Menos [-]The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach
2019
Felline, S. | Del Coco, L. | Kaleb, S. | Guarnieri, G. | Fraschetti, S. | Terlizzi, A. | Fanizzi, F.P. | Falace, A.
Glyphosate, as a broad-spectrum herbicide, is frequently detected in water and several studies have investigated its effects on several freshwater aquatic organisms. Yet, only few investigations have been performed on marine macroalgae. Here, we studied both the metabolomics responses and the effect on primary production in the endemic brown algae Fucus virsoides exposed to different concentration (0, 0.5, 1.5 and 2.5 mg L⁻¹) of a commercial glyphosate-based herbicide, namely Roundup®. Our results show that Roundup® significantly reduced quantum yield of photosynthesis (Fᵥ/Fₘ) and caused alteration in the metabolomic profiles of exposed thalli compared to controls. Together with the decrease in the aromatic amino acids (phenylalanine and tyrosine), an increase in shikimate content was detected. The branched-amino acids differently varied according to levels of herbicide exposure, as well as observed for the content of choline, formate, glucose, malonate and fumarate. Our results suggest that marine primary producers could be largely affected by the agricultural land use, this asking for further studies addressing the ecosystem-level effects of glyphosate-based herbicides in coastal waters.
Mostrar más [+] Menos [-]Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen
2019
Grewling, Łukasz | Bogawski, Paweł | Kryza, Maciej | Magyar, Donat | Šikoparija, Branko | Skjøth, Carsten Ambelas | Udvardy, Orsolya | Werner, Małgorzata | Smith, Matt
Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in relation to highly allergenic ragweed (Ambrosia L.) pollen grains that are transported from populations in Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air pollutants released over Silesia could become mixed with biological material and be transported to less polluted regions further North. We analysed levels of air pollution during episodes of long-distance transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the concentration of air pollutants with potential health-risk, i.e. SO₂, and PM₁₀, have also significantly increased (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM₁₀ include Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over Europe are not a “one-component” phenomenon, but are often related to elevated levels of chemical air pollutants and other biotic and abiotic components (fungal spores and desert dust).
Mostrar más [+] Menos [-]Transformation of lamotrigine by white-rot fungus Pleurotus ostreatus
2019
Chefetz, Benny | Marom, Rotem | Salton, Orit | Oliferovsky, Mariana | Mordehay, Vered | Ben-Ari, Julius | Hadar, Y. (Yitzhak)
One of the most persistent pharmaceutical compounds commonly found in treated wastewater is lamotrigine (LTG). It has also been detected in soils and crops irrigated with treated wastewater. Here we focused on the ability of the white-rot edible mushroom Pleurotus ostreatus to remove and transform LTG in liquid cultures. At concentrations of environmental relevance (1 and 10 μg L−1) LTG was almost completely removed from the culture medium within 20 days. To elucidate the mechanism of LTG removal and transformation, we applied a physiological-based approach using inhibitors and a competing agent. These experiments were conducted at a higher concentration for metabolites detection. Based on identification of sulfur-containing metabolites and LTG N2-oxide and the effect of specific inhibitors, cytochrome P450 oxidation is suggested as one of the reaction mechanisms leading to LTG transformation. The variety and number of transformation products (i.e., conjugates) found in the current study were larger than reported in mammals. Moreover, known conjugates with glucuronide, glutathione, or cysteine/glycine, were not found in our system. Since the majority of the identified transformation products were conjugates of LTG, this study highlights the persistence of LTG as an organic pollutant in ecosystems exposed to wastewater.
Mostrar más [+] Menos [-]