Refinar búsqueda
Resultados 1171-1180 de 7,240
Anthropogenic pollutants in Nephrops norvegicus (Linnaeus, 1758) from the NW Mediterranean Sea: Uptake assessment and potential impact on health
2022
Carreras-Colom, Ester | Cartes, Joan E. | Rodríguez-Romeu, Oriol | Padrós, Francesc | Solé, Montserrat | Grelaud, Michaël | Ziveri, Patrizia | Palet, Cristina | Soler-Membrives, Anna | Carrassón, Maite
Anthropogenic pollution is considered one of the main threats to the marine environment, and there is an imperious need to assess its potential impact on ecologically and economically relevant species. This study characterises plastic ingestion and tissue levels of potentially toxic metallic elements in Nephrops norvegicus and their simultaneous levels in abiotic compartments from three locations of the Catalan coast (NW Mediterranean Sea). A multidisciplinary assessment of the health condition of N. norvegicus through condition indices, enzymatic biomarkers and histological techniques is provided, and its relationship with anthropogenic pollutant levels explored. Plastic fibres were commonly found in stomachs of N. norvegicus (85% of the individuals), with higher abundances (13 ± 21 fibres · ind⁻¹) in specimens captured close to Barcelona. The presence of long synthetic fibres in near-bottom waters, as well as the mirroring trends in abundance among locations for water and ingested plastics, suggest that uptake from water may be occurring potentially through suspension feeding. The spatial variability in the levels of metallic elements in N. norvegicus was poorly correlated to the variability in sediments. In any case, present levels in abdominal muscle are considered safe for human consumption. Levels of ingested plastics only showed significant, yet weak, correlations with glutathione S-transferase and catalase activities. However, no other health parameter analysed showed any trend potentially associated to anthropogenic pollutant levels. Neither the condition indices nor the histopathological assessment evidenced any signs of pathologic conditions affecting N. norvegicus. Thus, it was concluded that presently there is no evidence of a negative impact of the studied pollutants on the health condition of N. norvegicus in the studied grounds.
Mostrar más [+] Menos [-]Comparing with oxygen, nitrate simplifies microbial community assembly and improves function as an electron acceptor in wastewater treatment
2022
Zheng, Lei | Wang, Xue | Ren, Mengli | Yuan, Dongdan | Tan, Qiuyang | Xing, Yuzi | Xia, Xuefeng | Xie, En | Ding, Aizhong
Biochemical oxidation and reduction are key processes in treating biological wastewater and they require the presence of electron acceptors. The functional impact of electron acceptors on microbiomes provides strategies for improving the treatment efficiency. This research focused on two of the most important electron acceptors, nitrate and oxygen. Molecule ecological network, null model, and functional prediction based on high-throughput sequencing were used to analyze the microbiomes features and assembly mechanism. The results revealed nitrate via the homogeneous selection (74.0%) decreased species diversity, while oxygen via the homogeneous selection (51.1%) and dispersal limitation (29.6%) increased the complexity of community structure. Microbes that were more strongly homogeneously selected for assembly included polyphosphate accumulating organisms (PAOs), such as Pseudomonas and variovorax in the nitrate impacted community; Pseudomonas, Candidatus_Accumulibacter, Thermomonas and Dechloromonas, in the oxygen impacted community. Nitrate simplified species interaction and increased the abundance of functional genes involving in tricarboxylic acid cycle (TCA cycle), electron transfer, nitrogen metabolism, and membrane transport. These findings contribute to our knowledge of assembly process and interactions among microorganisms and lay a theoretical basis for future microbial regulation strategies in wastewater treatment.
Mostrar más [+] Menos [-]ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis
2022
Zhang, Lu | Yin, Wei | Shen, Siyi | Feng, Yuyun | Xu, Wenjie | Sun, Yunfei | Yang, Zhou
Under intensive human activity, sewage discharge causes eutrophication-driven cyanobacteria blooms as well as nanomaterial pollution. In biological control of harmful cyanobacteria, top-down effect of protozoan has great potentials for removing cyanobacterial populations, degrading cyanotoxins, and improving phytoplankton community. ZnO nanoparticles as a kind of emerging contaminants have attracted increasing attention because of wide application and their high bio-toxicity effects on reducing the ingestion of aquatic animals including Paramecium, thereby possibly disturbing top-down control of cyanobacteria. Therefore, this study investigated the effects of ZnO nanoparticles at environmental-relevant concentrations on the protozoan Paramecium removing toxic Microcystis. Results showed Paramecium effectively eliminated all the Microcystis, despite exposure to ZnO nanoparticles. However, their ingestion rate was significantly reduced at more than 0.1 mg L⁻¹ ZnO nanoparticles, thereby delaying Microcystis removal. Nevertheless, at 0.1 mg L⁻¹ ZnO nanoparticles, the time to Microcystis extinction decreased compared to the group without ZnO nanoparticles, because Microcystis populations were reduced under this circumstance, while ingestion rate of Paramecium was unaffected. Furthermore, ZnO nanoparticles obviously accumulated in food vacuoles of Paramecium, and the size of nanoparticles aggregates and zinc concentrations in Paramecium were increased with ZnO nanoparticles concentrations. At the end of experiment, these food vacuoles were not dissipated. Overall, these findings suggest that ZnO nanoparticles impair protozoan top-down effects through reducing Microcystis and ingestion rate as well as disturbing functions of their digestive organelles, and highlight the need to consider the interfering effects of environmental pollutants on cyanobacterial removal efficiency by protozoans in natural waters.
Mostrar más [+] Menos [-]Oxygen sensors mediated HIF-1α accumulation and translocation: A pivotal mechanism of fine particles-exacerbated myocardial hypoxia injury
2022
Zhang, Ze | Wu, Liu | Cui, Tenglong | Ahmed, Rifat Zubair | Yu, Haiyi | Zhang, Rong | Wei, Yanhong | Li, Daochuan | Zheng, Yuxin | Chen, Wen | Jin, Xiaoting
Epidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM₂.₅) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM₂.₅ led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM₂.₅-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury. Moreover, the declined ATP level due to the HIF-1α-mediated energy metabolism remodeling from β-oxidation to glycolysis had a critical role in the PM₂.₅-increased myocardial hypoxia injury. The in-depth analysis delineated that PM₂.₅ exposure decreased the binding of prolyl hydroxylase domain 2 (PHD2) and HIF-1α and subsequent ubiquitin protease levels, thereby leading to the accumulation of HIF-1α. Meanwhile, factor-inhibiting HIF1 (FIH1) expression was down-regulated by PM₂.₅, resulting in the enhanced translocation of HIF-1α to the nucleus. Overall, our study provides valuable insight into the regulatory role of oxygen sensor-mediated HIF-1α stabilization and translocation in PM-exacerbated myocardial hypoxia injury, we suggest this adds significantly to understanding the mechanisms of haze particles-caused burden of cardiovascular disease.
Mostrar más [+] Menos [-]Rivers of waste: Anthropogenic litter in intermittent Sardinian rivers, Italy (Central Mediterranean)
2022
Palmas, Francesco | Cau, Alessandro | Podda, Cinzia | Musu, Alessio | Serra, Melissa | Pusceddu, Antonio | Sabatini, Andrea
While the increasing accumulation of anthropogenic litter in the marine environment has received considerable attention over the last decade, litter occurrence and distribution in rivers, the main source of marine litter, have been comparatively less investigated. Moreover, little information is available about the amount and typology of Riverine Anthropogenic Macro-litter (RAM) entering marine environments from intermittent rivers in low populated areas of the Mediterranean basin. To provide insights on this issue, we investigated density and composition of RAM accumulated over a total of 133 riverbanks, belonging to 37 river basins in the Sardinia Island (Mediterranean Sea). We report here that plastics, especially single-use items, represent the most frequent and abundant RAM category in all investigated basins. Statistical modelling revealed that occurrence of lightweight RAM (especially plastic) is mostly explained by levels of urban (12.3% of the relative contribution) and agricultural (12%) land use of the territory, whereas the proximity of bridges to the sampling point (21%) and the local population density (19.8%) are best predictors of heavy weighted RAM items (i.e., large metal items, appliances) occurrence. Our results confirm that plastics represent an important component of RAM and pinpoint that, beside plastic reduction policies and better waste management, actions aimed at abating and monitoring litter contamination should be localized on the proximity of bridges, whatever the local population density. Finally, to fill existing knowledge gaps in understanding the severity of litter discharge and accumulation in the Mediterranean Sea, land-to-sea systematic monitoring campaigns at appropriate spatial and temporal scales should be put in place.
Mostrar más [+] Menos [-]Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis
2022
Xu, Zhouyang | Wang, Wanzhou | Liu, Qisijing | Li, Zichuan | Lei, Lei | Ren, Lihua | Deng, Furong | Guo, Xinbiao | Wu, Ziyuan
Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O₃), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m³ increase in short-term exposure to O₃, NO₂, and SO₂, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m³ increase in NO₂ was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Mostrar más [+] Menos [-]Risk assessment and driving factors of trace metal(loid)s in soils of China
2022
Sun, Jiaxun | Zhao, Menglu | Cai, Boya | Song, Xiaoyong | Tang, Rui | Huang, Xinmiao | Huang, Honghui | Huang, Jian | Fan, Zhengqiu
Recently, with the rapid development of China's economy, the pollution of trace metal(loid)s (TMs) in soils has become increasingly severe and attracted widespread attention. Based on 1,402 published papers from 2000 to 2021, this study aimed to analyze the pollution intensity, ecological risk and driving factors for eight TMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Chinese soils. Results showed that the average concentrations of eight TMs in Chinese soils all exceeded background values, and the pollution of Cd and Hg was the most serious. Based on Principal component analysis of pollution intensity and ecological risk, the priority control TMs were identified for the heavily polluted provinces. The results of Geo-detector model suggested that Urban development factors contributed most to the TM accumulation in Chinese soils. Further, spatial analysis using bivariate Moran's I indicated that industrial activities contributed most to soil TM accumulation in the middle and lower reaches of the Yangtze River, while soil TM pollution in the southwest and northwest provinces was mainly caused by mining and metal smelting. This study investigated the relationship between soil TM pollution and anthropogenic activities, thus providing a scientific basis for controlling soil TM pollution at a large-scale level.
Mostrar más [+] Menos [-]Distribution of pesticides and some of their transformation products in a small lentic waterbody: Fish, water, and sediment contamination in an agricultural watershed
2022
Slaby, Sylvain | Le Cor, François | Dufour, Vincent | Auger, Lucile | Pasquini, Laure | Cardoso, Olivier | Curtet, Laurence | Baudoin, Jean-Marc | Wiest, Laure | Vulliet, Emmanuelle | Feidt, Cyril | Dauchy, Xavier | Banas, Damien
More than 20 years after the Water Framework Directive was adopted, there are still major gaps in the sanitary status of small rivers and waterbodies at the head of basins. These small streams supply water to a large number of wetlands that support a rich biodiversity. Many of these waterbodies are fishponds whose production is destined for human consumption or for the restocking of other aquatic environments. However, these ecosystems are exposed to contaminants, including pesticides and their transformation products. This work aims to provide information on the distribution, diversity, and concentrations of agricultural contaminants in abiotic and biotic compartments from a fishpond located at the head of watersheds. A total of 20 pesticides and 20 transformation products were analyzed by HPLC-ESI-MS/MS in water and sediment sampled monthly throughout a fish production cycle, and in three fish species at the beginning and end of the cycle.The highest mean concentrations were found for metazachlor-OXA (519.48 ± 56.52 ng.L⁻¹) in water and benzamide (4.23 ± 0.17 ng g⁻¹ dry wt.) in sediment. Up to 20 contaminants were detected per water sample and 26 per sediment sample. The transformation products of atrazine (banned in Europe since 2003 but still widely used in other parts of the world), flufenacet, imidacloprid (banned in France since 2018), metazachlor, and metolachlor were more concentrated than their parent compounds. Fewer contaminants were detected in fish and principally prosulfocarb accumulated in organisms during the cycle.Our work brings innovative data on the contamination of small waterbodies located at the head of a basin. The transformation products with the highest frequency of occurrence and concentrations should be prioritized for further environmental monitoring studies, and specific toxicity thresholds should be defined. Few contaminants were found in fish, but the results challenge the widely use of prosulfocarb.
Mostrar más [+] Menos [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie M. | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Mostrar más [+] Menos [-]Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla)
2022
Bertucci, Anthony | Hoede, Claire | Dassié, Emilie | Gourves, Pierre-Yves | Suin, Amandine | Le Menach, Karine | Budzinski, Hélène | Daverat, Françoise
In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use of microbiota as bioindicators of environment quality. We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be explained by a reduced number of environmental and biological factors, specifically the relative abundance of fish preys in eels’ diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, we identified a series of indicator taxa with differential abundance between the three sites. Changes in the microbial communities in the gut caused by environmental pollutants were previously undocumented in European eels. Our results indicate that microbiota might represent another route by which pollutants affect the health of these aquatic sentinel organisms.
Mostrar más [+] Menos [-]