Refinar búsqueda
Resultados 1211-1220 de 7,990
Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave
2021
Dinh, Khuong V. | Doan, Kha L.U. | Doan, Nam X. | Pham, Hung Q. | Le, Thi Hoang Oanh | Le, Minh-Hoang | Vu, Minh T.T. | Dahms, Hans-Uwe | Truong, Kiem N.
Extreme temperatures from marine heatwaves (MHWs) and pollution are dominant stressors in tropical marine ecosystems. However, we know little about the role of transgenerational effects of metals and MHWs in shaping the offspring's vulnerability to these stressors. We addressed this fundamental knowledge gap by exposing the planktonic copepod Pseudodiaptomus incisus to copper (Cu: control, 15 and 60 μg L⁻¹) under 2 temperatures (30 and a simulated marine heatwave at 34 °C) in the first generation (F1) and 16 treatments in F2: offspring from each of 4 F1 conditions (control or 15 μg Cu L⁻¹ × 30 or 34 °C) was reared in 4 F2 conditions (control or 15 μg Cu L⁻¹ × 30 or 34 °C). We assessed changes in copepod performance, particularly survival, adult size, grazing, and reproduction. In F1, Cu or marine heatwave (MHW) exposures reduced all fitness traits of F1; the effects were particularly strong when both stressors were present. Transgenerational effects of Cu or MHW also strongly reduced F2 performance. Direct Cu and MHW effects on the offspring were further strengthened by transgenerational effects, resulting in more substantial reductions in F2 performance when both generations were exposed to these stressors. As copepods are major food resources for corals, shrimps, or fish larvae and juveniles, strong transgenerational and direct effects of Cu and MHW can have a cascading effect on entire coastal food webs. These results highlight the importance of considering the interaction of transgenerational and direct effects of multiple stressors, particularly relevant for short-lived organisms in tropical marine ecosystems.
Mostrar más [+] Menos [-]Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil
2021
Li, Huan-Qin | Shen, Ying-Jia | Wang, Wen-Lei | Wang, Hong-Tao | Li, Hu | Su, Jian-Qiang
Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg⁻¹). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.
Mostrar más [+] Menos [-]Effects of long-term household air pollution exposure from solid fuel use on depression: Evidence from national longitudinal surveys from 2011 to 2018
2021
Li, Chenshuang | Zhou, Ying | Ding, Lieyun
Evidence of the effects of long-term household air pollution (HAP) on human mental health is limited. This study aimed to explore the longitudinal relationship between long-term household air pollution exposure from solid fuel use and depression based on nationally representative follow-up dataset. A total of 7005 middle- and old-age adults from the latest four waves (2011, 2013, 2015, and 2018) of China Health and Retirement Longitudinal Study (CHARLS) were involved. The Center for Epidemiologic Studies Depression scale (CES-D 10) was used to measure depressive symptoms and individuals who got more than 12 points were considered to have depression symptoms. We conducted Cox proportional hazards regression models to examine the association between household air pollution and depression in overall population, and subgroup stratified by socio-demographic factors, lifestyle behaviors, chronic diseases, and residential environments. We found long-term household air pollution exposure from solid fuel use was significantly associated with higher depression risk among Chinese older adults (HR 1.27, 95% CI 1.14–1.42 in heating; 1.26, 1.13–1.40 in cooking). Longer duration of household air pollution exposure (1.47, 1.28–1.68 in heating; 1.36, 1.19–1.56 in cooking) and household air pollution from crop residue/wood burning (1.66, 1.41–1.94 in heating; 1.37, 1.23–1.53 in cooking) was correlated with higher depression risk. For subgroups analysis, the effect of household air pollution from solid fuel on depression varied. Compared with those who using clean fuel, older adults living in small size houses or houses with small number rooms had increasing depression risks if they used solid fuel for heating or cooking. Our findings indicate long-term household air pollution exposure from solid fuel use is associated with higher depression risk. Reducing household air pollution by restricting solid fuel use can be effective ways to prevent depression for Chinese older adults and decrease related public health burden.
Mostrar más [+] Menos [-]Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian, Rana pipiens
2021
Robinson, Stacey A. | Chlebak, Ryan J. | Young, Sarah D. | Dalton, Rebecca L. | Gavel, Melody J. | Prosser, Ryan S. | Bartlett, Adrienne J. | de Solla, Shane R.
Neonicotinoid pesticide use is widespread and highly debated, as evidenced by recent attention received from the public, academics and pesticide regulatory agencies. However, relatively little is known about the physiological effects of neonicotinoid insecticides on aquatic vertebrates. Amphibians (larval stages in particular) are excellent vertebrate bioindicators in aquatic systems due to their risk of exposure and sensitivity to environmental stressors. Previous work with wood frog (Rana sylvatica) tadpoles exposed to formulated products containing thiamethoxam or clothianidin in outdoor mesocosms found significant shifts in leukocyte profiles, suggesting the tadpoles were physiologically stressed. The main objective of the present study was to characterize this stress response further using complementary measures of stress after exposure to clothianidin on northern leopard frogs (Rana pipiens) during their aquatic larval stages. Laboratory static-renewal exposures were conducted over eight weeks with the technical product clothianidin at 0, 0.23, 1, 10 and 100 μg/L, and diquat dibromide at 532 μg/L was used as a positive control. We assessed tadpole leukocyte profiles and measures of oxidative stress as these sub-lethal alterations could affect amphibian fitness. We found changes in several types of leukocytes at 1 and 10 μg/L, suggesting that these tadpoles exhibited signs of mild physiological stress. Clothianidin also induced an oxidative stress response at 0.23, 1 and 100 μg/L. However, we found no differences in survival, growth, development time or hepatosomatic index in frogs exposed to clothianidin. Our study indicates that tadpoles chronically exposed to clothianidin have increased stress responses, but in the absence of concentration-response relationships and effects on whole-organism endpoints, the implications on the overall health and fitness of these changes are unclear.
Mostrar más [+] Menos [-]Selected technology-critical elements as indicators of anthropogenic groundwater contamination
2021
Amiel, Nitai | Dror, Ishai | Zurieli, Arik | Livshitz, Yakov | Reshef, Guy | Berkowitz, Brian
Groundwater contamination originating from anthropogenic industrial activities is a global concern, adversely impacting health of living organisms and affecting natural ecosystems. Monitoring contamination in a complex groundwater system is often limited by sparse data and poor hydrogeological delineation, so that numerous indicators (organic, inorganic, isotopic) are frequently used simultaneously to reduce uncertainty. We suggest that selected Technology-Critical Elements (TCEs), which are usually found in very low concentrations in the groundwater environment, might serve as contamination indicators that can be monitored through aquifer systems. Here, we demonstrate the use of selected TCEs (in particular, Y, Rh, Tl, Ga, and Ge) as indicators for monitoring anthropogenic groundwater contamination in two different groundwater systems, near the Dead Sea, Israel. Using these TCEs, we show that the sources of local groundwater contamination are phosphogypsum ponds located adjacent to fertilizer plants in two industrial areas. In addition, we monitored the spatial distribution of the contaminant plume to determine the extent of well and spring contamination in the region. Results show significant contamination of the groundwater beneath both fertilizer plants, leading to contamination of a series of wells and two natural springs. The water in these springs contains elevated concentrations of toxic metals; U and Tl levels, among others, are above the maximum concentration limits for drinking water.
Mostrar más [+] Menos [-]The contribution of detoxification pathways to pyrethroid resistance in Hyalella azteca
2021
Fung, Courtney Y. | Zhu, Kun Yan | Major, Kaley | Poynton, Helen C. | Huff Hartz, Kara E. | Wellborn, Gary | Lydy, Michael J.
Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P₀) individuals to 1123 ng/L in the first filial (F₁) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P₀ to F₁, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.
Mostrar más [+] Menos [-]Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification
2021
Chaparro, Marcos A.E.
Pollution-tolerant lichens are recognized ecological indicators of air pollution in cities, which can also collect airborne anthropogenic particles in their tissues. Harmful (sub)micron-sized magnetites are a ubiquitous component of air particle pollution, adversely impacting human health. In this work, in situ magnetic susceptibility κᵢₛ of well-characterized ultrafine magnetite and lichen thalli were measured to quantify the amount of airborne magnetic particles (AMP) after calibration and to assess the lichen's decontamination over time. Up to 2850 magnetic measurements were carried out in twenty-nine transplanted lichens (collected in urban and clean areas) from winter 2020 to winter 2021. Before the transplants, their initial κᵢₛ values were 0.23–9.45 × 10⁻⁵ SI, representing AMP contents of 0.1–4.6 mg in lichen thalli. After lichens were transplanted to a shared site, the magnetic signals evidenced short-term increases and long-term decreases. After three, five and nine months, the AMP loss is more pronounced for transplanted lichens from polluted (e.g., AMP_5-months loss = 0.59 mg) than clean (= 0.08 mg) sites. Rainfall influenced the lichen's decontamination between seasons. In situ measurements and lichens offer a valued and time-saving methodology for biomonitoring harmful airborne particles simply and effectively.
Mostrar más [+] Menos [-]Quantification of Pb pollution sources in complex urban environments through a multi-source isotope mixing model based on Pb isotopes in lichens and road sediment
2021
Dietrich, Matthew | Krekeler, Mark P.S. | Kousehlar, Masoomeh | Widom, Elisabeth
Despite a growing focus on anthropogenic toxic metal pollution in urban environments, few studies have addressed the problem of quantification when more than two pollution sources are likely present, particularly within complex urban settings in the United States (U.S.). In this study, we utilize the MixSIAR package in R for source apportionment based on Pb isotopic signatures in lichen and road sediment in two urban-industrial centers in SW Ohio (OH). We show that ranges of pollutant contributions are more useful than only visualizing mean or raw values of source apportionment, because this avoids overinterpretation of data when certain sources have a large range of uncertainty. We point out both the dominance of industrial pollution as well as the legacy of leaded gasoline pollution in typical mid-sized U.S. cities, which is evident in both road sediment and lichens. Leaded gasoline contribution to Pb in Middletown, OH lichens mostly vary between ~10 and 25%, while in Hamilton, OH the contribution to lichens and road sediment tends to be relatively negligible except for two road sediment samples and one lichen sample, where median contributions are ~20–30%. Industrial combustion pollution source contributions vary between ~25 and 75% in Hamilton, and ~50–100% in Middletown, OH. Furthermore, comparing pollution sources in lichens to modern particulate matter can provide a record of how pollutant sources change over time, such as our traffic lichen (Sample Li-9) plotting closer to leaded gasoline on a bivariate mixing diagram than modern traffic particulate matter, or our coke plant lichen containing slightly less Pb contribution from industrial combustion sources relative to modern coke plant particulate matter. Lastly, when applicable, multi-source mixing models should be complimented in future studies with additional isotopic source tracers such as Cu, Zn, Nd, and Os to further elucidate unique sources of metal pollutants in addition to Pb.
Mostrar más [+] Menos [-]Antibiotics adaptation costs alter carbon sequestration strategies of microorganisms in karst river
2021
Xiang, Shizheng | Li, Yiqiang | Wang, Wanying | Zhang, Biao | Shi, Wenyu | Zhang, Jia | Huang, Fuyang | Liu, Fei | Guan, Xiangyu
Karst ecosystems make an important contribution to the global carbon cycle, in which carbon-fixing microorganisms play a vital role. However, the healthy functioning of karst ecosystems is threatened because pollutants easily diffuse and spread through them due to their strong hydraulic connectivity. The microbiome of a karst river contaminated with antibiotics was studied. Through co-occurrence network analysis, six ecological clusters (MOD 1–MOD 6) with different distribution characteristics were determined, of which four were significantly correlated with antibiotics. The carbon fixation pathways in different ecological clusters were varied, and the dominant hydroxypropionate-hydroxybutyrate cycle and reductive acetyl-CoA pathway were negatively and positively correlated with antibiotics, respectively. Long-term antibiotic contamination altered the selection of carbonic anhydrase (CA) encoding genes in some of the CA-producing mineralization microorganisms. The selection of different carbon fixation pathways is a possible strategy for the microbial community to compensate for the adaptation costs associated with the pressure of antibiotics contamination and emergence of antibiotics resistance. Bayesian network analysis revealed that some carbon sequestration functions (such as β-CA and reductive acetyl-CoA pathway) surpassed certain antibiotic resistance genes in the regulation of environmental factors and microbial networks. An ecological cluster (MOD5) that possibly homologous to antibiotic contamination was the final node of the microbial community in karst river, which indicated that ecological clusters were not only selected by antibiotics, but were also regulated by multiple environmental factors in the karst river system. The carbon sequestration pathway was more directly reflected in the abundance of ecological groups than in the influence of CA. This study provides new insights into the feedback effect of karst system on typical pollutants generated from human activities.
Mostrar más [+] Menos [-]In-use emissions and usage trend of pellet heating stoves in rural Yangxin, Shandong Province
2021
Shrestha, Prabin | Zhang, Wenting | Mawusi, Sylvester K. | Li, Jie | Xu, Jiangdong | Li, Chuang | Xue, Chunyu | Liu, Guangqing
The use of coal in Chinese households for winter heating emits harmful pollutants that severely affect indoor air quality and climate. Therefore, China has made efforts to transition into clean heating using improved heating stoves and biomass pellets. Although the economic and policy implications of such demonstration projects have been extensively investigated, little has been done to understand the real-world performance and adoption trends of such stoves. This study measured in-use emissions from nine different pellet stoves used for heating among 52 rural households in Yangxin, Shandong Province. The temperature of the stove chimney of 21 households was monitored and 56 households were surveyed to explore the stove use trend. The particulate and gaseous emission concentrations for most of the stoves exceeded the limits specified in the Chinese national standard. The measured fuel energy-based emission factors (mean ± standard deviation) for CO₂, CO, NOx, and PM₂.₅ were 103 ± 3, 1.41 ± 1.19, 0.336 ± 0.237, and 0.146 ± 0.108 g/MJ, respectively. Between January to February, the average daily heating duration was 8.71 h, and the sustained use of heating stoves was seen among over 85% of the households. On average, the households used their heating stoves for 3.28 months and the estimated annual pellets consumption for a household was 2.7 tons. Besides inherent variabilities associated with user habits, the stove’s design-related shortcomings and low-grade pellets hindered the performance and effectiveness of pellet stoves. This study provides insights into opportunities and challenges for the promotion of cleaner fuels and heating technologies. Furthermore, it will provide information on emissions from rural residential sources to build the emission inventory and inform policymaking for successful stove promotion programs.
Mostrar más [+] Menos [-]