Refinar búsqueda
Resultados 1231-1240 de 2,512
EDTA-Enhanced Thermal Washing of Contaminated Dredged Marine Sediments for Heavy Metal Removal Texto completo
2014
Yin, Ke | Giannis, Apostolos | Wong, Angeline S. Y. | Wang, Jing-Yuan
Preliminary analysis on dredged marine sediments from Benoi basin in Singapore was carried out showing elevated concentrations of Zn, Cu, Pb, Cd, Cr and Ni. Ethylenediamine tetraacetic acid (EDTA) thermal washing experiments were conducted for heavy metal extraction at temperature 100 °C. Results indicated the significant efficiency of thermal washing to extract Pb, Zn and Ni. However, there was little or no influence in the removal of Cu and Cr and a slight effect to Cd indicating multiple mechanisms. In addition, agitation was found to have great influence on the removal efficiency of heavy metals as experiments without agitation performed lesser or no extraction due to limited contact of the washing solution and the dredged sediment. Sequencing processes of thermal treatment followed by EDTA washing showed limited performance, likely due to thermal stabilization of the contaminants particularly at low liquid-to-soil (L/S) ratio. Furthermore, sequential extraction analysis on the metal speciation was performed before and after thermal washing. It was revealed that metals mainly extracted from fractions bound to carbonates and Fe-Mn oxides, the relative mobile fraction. On the contrary, metals in the residual fraction displayed a considerable stability.
Mostrar más [+] Menos [-](Methyl)Mercury, Arsenic, and Lead Contamination of the World’s Largest Wastewater Irrigation System: the Mezquital Valley (Hidalgo State—Mexico) Texto completo
2014
Guédron, Stéphane | Duwig, Céline | Prado, Blanca Lucia | Point, David | Flores, Marizol Giovana | Siebe, Christina
(Methyl)Mercury, Arsenic, and Lead Contamination of the World’s Largest Wastewater Irrigation System: the Mezquital Valley (Hidalgo State—Mexico) Texto completo
2014
Guédron, Stéphane | Duwig, Céline | Prado, Blanca Lucia | Point, David | Flores, Marizol Giovana | Siebe, Christina
In the Mezquital valley, untreated wastewater (45 m³ s⁻¹) from Mexico City is used for the irrigation of around 900 km²of agricultural soil. High concentrations of metals including methylmercury (3.8 ± 2.5 ng l⁻¹) and lead (0.16 ± 0.05 mg l⁻¹) were measured in anoxic wastewater canals. Downstream, dissolved, and particulate polymetallic (Hg, Pb, Cr…) concentrations decreased by factors 10 to 1,000 in the Tula River (which received a mix of fresh and wastewater) due to the dilution and oxidation of surface water, and to the decrease of contaminants concentration in wastewater downstream irrigated soils. However, dissolved and particulate methylmercury concentrations (0.06 to 0.33 ng l⁻¹and 1.6 to 4.5 μg kg⁻¹, respectively) remained elevated in comparison to other natural hydrosystems. The monitoring of an irrigation event and the distribution of metals in a soil profile irrigated for more than 80 years showed that metals were retained in the draining tilled layer. The oxic conditions and slightly acidic pH (~6.5) in this layer were found favorable for metal adsorption and co-precipitation with redox-sensitive elements (Fe, Mn) and suggestively for mercury demethylation. In the downstream Tula River and groundwater, almost all metallic concentrations remained below guideline thresholds. Only, dissolved As and Pb concentrations remained two to five times above thresholds for drinking water, highlighting a potential health risk for approximately 500,000 people who use groundwater as water supply.
Mostrar más [+] Menos [-](Methyl) Mercury, arsenic, and lead contamination of the world's largest wastewater irrigation system : the Mezquital Valley (Hidalgo State-Mexico) Texto completo
2014
Guédron, Stéphane | Duwig, Celine | Prado, B. L. | Point, David | Flores, M. G. | Siebe, C. | Institut des Sciences de la Terre (ISTerre) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS) | Laboratoire d'étude des transferts en hydrologie et environnement (LTHE) ; Observatoire des Sciences de l'Univers de Grenoble (OSUG) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
In the Mezquital valley, untreated wastewater (45 m(3) s(-1)) from Mexico City is used for the irrigation of around 900 km(2) of agricultural soil. High concentrations of metals including methylmercury (3.8+/-2.5 ng l(-1)) and lead (0.16+/-0.05 mg l(-1)) were measured in anoxic wastewater canals. Downstream, dissolved, and particulate polymetallic (Hg, Pb, Cr.) concentrations decreased by factors 10 to 1,000 in the Tula River (which received a mix of fresh and wastewater) due to the dilution and oxidation of surface water, and to the decrease of contaminants concentration in wastewater downstream irrigated soils. However, dissolved and particulate methylmercury concentrations (0.06 to 0.33 ng l(-1) and 1.6 to 4.5 g kg(-1), respectively) remained elevated in comparison to other natural hydrosystems. The monitoring of an irrigation event and the distribution of metals in a soil profile irrigated for more than 80 years showed that metals were retained in the draining tilled layer. The oxic conditions and slightly acidic pH (similar to 6.5) in this layer were found favorable for metal adsorption and co-precipitation with redox-sensitive elements (Fe, Mn) and suggestively for mercury demethylation. In the downstream Tula River and groundwater, almost all metallic concentrations remained below guideline thresholds. Only, dissolved As and Pb concentrations remained two to five times above thresholds for drinking water, highlighting a potential health risk for approximately 500,000 people who use groundwater as water supply.
Mostrar más [+] Menos [-]Effects of Humic Acid and Solution Chemistry on the Retention and Transport of Cerium Dioxide Nanoparticles in Saturated Porous Media Texto completo
2014
Lv, Xueyan | Gao, Bin | Sun, Yuanyuan | Shi, Xiaoqing | Xu, Hongxia | Wu, Jichun
When released into natural aquatic systems, cerium oxide (CeO₂) nanoparticles (NPs) may have toxic effects to the ecosystems and public health; it is thus important to understand their environmental fate and transport. This work studied the effects of humic acid (HA) concentrations (0–10 mg L⁻¹) and solution chemistry (ionic strength (IS) and pH) on the retention and transport of CeO₂NPs in water-saturated porous media under environmental relevant conditions. HA and IS showed remarkable effect on the retention and transport of CeO₂NPs in the porous media. Even at low concentrations (i.e., 5 and 10 mg L⁻¹), HA stabilized CeO₂NPs in the suspensions by introducing both negative surface charge and steric repulsion and thus enhanced their mobility in the porous media. When solution HA concentration increased or ionic strength decreased, mobility of CeO₂NPs in the porous media enhanced dramatically. Solution pH, however, had little influence on the mobility of the CeO₂NPs under the tested experimental conditions, and increasing solution pH only slightly increased the transport of the NPs. Mathematical models were applied to describe the experimental data. Predictions from the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and advection–dispersion–reaction (ADR) model matched the experimental data well.
Mostrar más [+] Menos [-]Stabilization of Sewage Sludge by Using Various By-products: Effects on Soil Properties, Biomass Production, and Bioavailability of Copper and Zinc Texto completo
2014
Shaheen, S. M. | Shams, M. S. | Ibrahim, S. M. | Elbehiry, F. A. | Antoniadis, V. | Hooda, P. S.
Stabilization of sewage sludge (SS) prior to its land disposal may help control the mobility of SS-borne contaminants, particularly potentially toxic metals. We examined the effects of stabilized SS application on soil properties, biomass production, and phytoavailability of Cu and Zn to plants grown in two contrasting soils, Entisol and Aridisol. Stabilized SS mixtures were created by mixing SS in a 3-to-1 ratio with bentonite (B), sugar beet factory lime (SL), brick factory fly ash (BFA), rice straw (RS), water hyacinth (WH), and 50:50 mixture of RS and SL. Mixtures were applied at 50 Mg ha⁻¹, and Sorghum vulgare L. and Eurica sativa were grown in a pot experiment. All the amendments increased plant availability and uptake of both Cu and Zn compared to the unamended control. The application of stabilized SS increased dry plant biomass significantly and decreased DTPA-extractable elements compared to the non-stabilized SS treatment. We conclude that of the six amendments studied, especially sugar beet factory lime (SL) and bentonite (B), are promising for the stabilization of metal-contaminated biosolids and should be tested under field conditions.
Mostrar más [+] Menos [-]Responses of Phalaris canariensis L. Exposed to Commercial Fuels during Growth Texto completo
2014
Patat, María Laura | Passoni, Isabel | Arca, Jorge Martinez | González, Jorge Froilán | Murialdo, Silvia Elena
The growth behavior of canary grass (Phalaris canariensis L) when cultivated in presence of farming fuels is reported in this work. P. canariensis L. is relevant in several countries. It is an emergent plant for phytoremediation and biofuel activities. The following variables: root length, stem length, total plant weight, green tissue weight (tiller, leaf), and total chlorophyll and chlorophyll a/b ratio, were monitored during the growth in presence of commercial fuels (premium grade, regular grade, diesel, and kerosene) at different concentrations. We applied a comprehensive statistical analysis to understand the results: Univariate analysis, factorial analysis of variance, and subsequent Tukey test were applied to the variables to assess the significance of the differences found. The normality of these variables was analyzed with the Shapiro Wilk test. All parameters were affected by all type and concentrations of fuels and its interaction. This is one of the first reported cases which describe the growth parameters responses from canary grass when cultivated in presence of an essentially constant concentration of farming fuels.
Mostrar más [+] Menos [-]Genotoxic Effects of Heavy Metal Mixture in Drosophila melanogaster: Expressions of Heat Shock Proteins, RAPD Profiles and Mitochondrial DNA Sequence Texto completo
2014
Doğanlar, Zeynep Banu | Doğanlar, Oğuzhan | Tabakçıoğlu, Kıymet
The genotoxic effects of four heavy metal mixtures on Drosophila melanogaster were investigated with reference to gene expressions of heat shock proteins (HSP26, HSP60, HSP70 and HSP83), DNA profiles, and mitochondrial NADH dehydrogenase sequence. Adult D. melanogaster flies were treated with a mixture of four (Fe, Cu, Cd and Pb) heavy metals (HMs) in three different concentrations, which were selected based on one higher dose (HM3) and one lower dose (HM1) relative to the permitted limits (HM2) in drinking water at 1st, 5th and 10th days. It was determined that the amount of the accumulated heavy metals and the expressions of the HSP genes were changed with increasing exposure time. The accumulations of Cd and Pb were increased with increasing exposure time; additionally, the HSP expression patterns were determined as HSP70 > HSP60 > HSP26 > HSP83 HM1 (5th day), HM2 (5th day and 10th day), and HM3 (all exposure times). It was also determined that the application of the heavy metal mixture affected the random amplified polymorphic DNA (RAPD) profiles and the mitochondrial NADH dehydrogenase sequence of D. melanogaster. The highest base pair changes (9 bp) were determined at the HM2 concentration (permissible limits in drinking water) on the 1st day of treatment. Therefore, it was shown that mixture of four heavy metals caused a genotoxic effect and D. melanogaster is a useful model organism for heavy metal-induced genotoxicity studies.
Mostrar más [+] Menos [-]Synthesis of a Novel Hydrogel Nanocomposite Coated on Cotton Fabric for Water–Oil Separation Texto completo
2014
Hosseinzadeh, Hossein | Mohammadi, Sina
A new cotton-based hydrogel nanocomposite was successfully prepared by free radical graft copolymerization of acrylamide (AAm) and acrylonitrile (AN) onto fabric followed by insertion of Ag nanoparticles. Ammonium persulfate (APS) was used as an initiator in the presence of a cross-linker, methylene bisacrylamide (MBA). Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy were employed to confirm the structure of the hydrogel nanocomposite. Initially, the affecting variables onto graft polymerization (i.e. AAm, AN, MBA, APS, and silver concentrations) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The resulted nanocomposite exhibits superhydrophilic and superhydrophobic properties. Therefore, the grafted fabric selectively separated water from oil/water mixtures with high separation efficiency. The influences of filter type, percentage of coated hydrogel on cotton, presence of silver nanoparticles, pH of solution, extracted oil type, as well as hydrogel nanocomposite on the separation efficiency of filters were also studied in detail. Moreover, pH of zero point charge (pHzₚc) of the hydrogel nanocomposite was determined by alkaline titration method, and a value of 6.5 was obtained.
Mostrar más [+] Menos [-]Phytoremediation of Zn- and Cr-Contaminated Soil Using Two Promising Energy Grasses Texto completo
2014
Li, C. | Xiao, B. | Wang, Q. H. | Yao, S. H. | Wu, Zhiyang
The outstanding biological performance and non-food utilization of bioenergy grass possibly make it to be the best candidate for phytoremediation of heavy metal-contaminated soil, but evidence is limited. In this study, we conducted pot experiments to quantify the performance of two promising energy grasses, Arundo donax and Miscanthus sacchariflorus, in the phytoremediation of Zn- and Cr-contaminated soil. The results showed that (1) the biomass and root length of the two grasses were firstly increased and then kept stable or slightly decreased with increasing soil Zn/Cr concentration, implying that the two grasses had strong tolerance to Zn/Cr contamination; (2) the Zn/Cr concentration in the grass roots was two to seven times of that in the shoots, while both of them were positively correlated with the Zn/Cr concentration in soil; (3) the total accumulation of Zn/Cr in the grass (shoots + roots) was firstly determined by their concentration in the shoots and secondly determined by the shoots’ biomass, indicating that most of the Zn/Cr could be removed from contaminated soil by harvesting the aboveground parts; (4) the accumulating amount of the two grasses for Zn were 17.5 and 12.1 mg plant⁻¹, respectively; while the accumulating amount for Cr were 3.9 and 2.9 mg plant⁻¹, respectively. Taken together, the two energy grasses had strong tolerance and high accumulating ability for Zn/Cr, and therefore, they are promising candidates for the phytoremediation of Zn-/Cr-contaminated soil.
Mostrar más [+] Menos [-]Impacts of a Poultry Processing Plant on the Diversity of Escherichia coli Populations and Transferability of Tetracycline Resistance Genes in an Urban Stream in South Carolina Texto completo
2014
Anderson, Brent W. | McCauley, Steve | Lewis, Gregory P. | Liao, Min-Ken
Poultry feed is often supplemented with low dosages of antibiotic to promote growth, making farms and animal processing facilities potential point sources of antibiotic-resistant fecal bacteria to aquatic ecosystems. In 2010 and 2011, we detected high concentrations of fecal indicator bacteria (FIB) in effluent released from a poultry processing plant into a headwater stream in Greenville, South Carolina. The FIB pollution became undetectable in 2012 with the plant under new management. To determine the plant’s impacts on the stream, we compared the genetic variations of Escherichia coli populations from upstream and downstream of the plant and from reference streams in the same watershed by classifying each isolate into an E. coli reference collection (ECOR) phylogenetic group. For tetracycline-resistant E. coli isolates, we analyzed the resistance genes, minimum inhibitory concentrations (MICs), gene transferability, and plasmid incompatibility groups (Inc). Distributions of ECOR groups upstream and downstream of the plant differed significantly in 2011 but not in 2012. The resistance genes tet(A) and tet(B) were prevalent, with tet(A) more likely to be found on the promiscuous IncP plasmid. A higher percentage of isolates having both tet(A) and tet(B) was found downstream in 2011 than in 2012. Dual-gene isolates did not have higher MICs than single-gene isolates but were more likely to transfer tet(A) on IncP. We propose that the processing plant acted not only as a point source of FIB but also as a factor influencing gene transferability. Additionally, given the results from 2012, the FIB impacts of the processing plant appeared to be reversible.
Mostrar más [+] Menos [-]Separation of Sulfur Hexafluoride from a Nitrogen/Sulfur Hexafluoride Mixture Using a Polymer Hollow Fiber Membrane Texto completo
2014
Choi, Jae-Woo | Lee, Soonjae | An, Byungryul | Kim, Sŏng-bae | Yi, Sang-hyŏp
Sulfur hexafluoride (SF₆) has been evaluated by the Intergovernmental Panel on Climate Change (IPCC) as the substance with the highest global warming index. Because of its superior insulating and arc clearing capacities, it is commonly used as an insulator in electrical machines. SF₆waste products form in the process of storing, maintaining, and repairing the machines. SF₆emitted into the atmosphere remains for 3,200 years, causing global warming. Release into the mesosphere leads to photolysis and creation of highly toxic and corrosive by-products. A review of the literature related to the retrieval and separation of SF₆using a separating membrane indicates that research on the permeability of the separating membrane material is lacking. Additionally, research on the concentrations of the SF₆waste products and the separation/retrieval with operating conditions with optimal energy efficiency is only in the initial stages. Therefore, this research assessed the permeability of commercialized separation membranes polysulfone (PSf), polycarbonate (PC), and polyimide (PI) using the gases SF₆and N₂. Using an SF₆/N₂mixture with the same concentration as the SF₆waste products, we studied the separation and retrieval capacities of PSf, PC, and PI separation membranes under varying operating conditions. The permeability tests showed that the selective permeability of N₂/SF₆is highest for the PI membrane and lowest for the PC membrane. When the concentrations of SF₆retrieved from the mixture separation process were compared, the PC membrane was found to be the highest, with 95.6 % at 0.5 MPa. The retrieval percentage of SF₆was highest for PSf, with 97.8 % at an operating pressure of 0.3 MPa and a waste production of 150 cm³/min. The retrieval rates and retrieval failure rates have an inverse relationship. In total, 99 % of the supply of SF₆was identified via the retrieval rates and retrieval failure rates, so it could be confirmed that the separation of the SF₆/N₂mixture using a macromolecular hollow fiber separation membrane works properly.
Mostrar más [+] Menos [-]