Refinar búsqueda
Resultados 1241-1250 de 7,990
Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks
2021
Xiao, Enzong | Ning, Zengping | Sun, Weimin | Jiang, Shiming | Fan, Wenjun | Ma, Liang | Xiao, Tangfu
Thallium (Tl) is a highly toxic metalloid and is considered a priority pollutant by the US Environmental Protection Agency (EPA). Currently, few studies have investigated the distribution patterns of bacterial and fungal microbiomes in Tl-impacted environments. In this study, we used high-throughput sequencing to assess the bacterial and fungal profiles along a gradient of Tl contents in Tl mine waste rocks in southwestern China. Our results showed that Tl had an important, but different influence on the bacterial and fungal diversity indices. Using linear regression analysis, we furtherly divided the dominant bacterial and fungal groups into three distinct microbial sub-communities thriving at high, moderate, and low levels of Tl. Furthermore, our results also showed that Tl is also an important environmental variable that regulates the distribution patterns of ecological clusters and indicator genera. Interestingly, the microbial groups enriched in the samples with high Tl levels were mainly involved in metal and nutrient cycling. Taken together, our results have provided useful information about the responses of bacterial and fungal groups to Tl contamination.
Mostrar más [+] Menos [-]Gathering at the top? Environmental controls of microplastic uptake and biomagnification in freshwater food webs
2021
Krause, Stephan | Baranov, Viktor | Nel, Holly A. | Drummond, Jennifer D. | Kukkola, Anna | Hoellein, Timothy | Sambrook Smith, Gregory H. | Lewandowski, Joerg | Bonet, Berta | Packman, Aaron I. | Sadler, J. P. | Inshyna, Valentyna | Allen, Steve | Allen, Deonie | Simon, Laurent | Mermillod-Blondin, Florian | Lynch, Iseult
Microplastics are ubiquitous in the environment, with high concentrations being detected now also in river corridors and sediments globally. Whilst there has been increasing field evidence of microplastics accumulation in the guts and tissues of freshwater and marine aquatic species, the uptake mechanisms of microplastics into freshwater food webs, and the physical and geological controls on pathway-specific exposures to microplastics, are not well understood. This knowledge gap is hampering the assessment of exposure risks, and potential ecotoxicological and public health impacts from microplastics.This review provides a comprehensive synthesis of key research challenges in analysing the environmental fate and transport of microplastics in freshwater ecosystems, including the identification of hydrological, sedimentological and particle property controls on microplastic accumulation in aquatic ecosystems. This mechanistic analysis outlines the dominant pathways for exposure to microplastics in freshwater ecosystems and identifies potentially critical uptake mechanisms and entry pathways for microplastics and associated contaminants into aquatic food webs as well as their risk to accumulate and biomagnify.We identify seven key research challenges that, if overcome, will permit the advancement beyond current conceptual limitations and provide the mechanistic process understanding required to assess microplastic exposure, uptake, hazard, and overall risk to aquatic systems and humans, and provide key insights into the priority impact pathways in freshwater ecosystems to support environmental management decision making.
Mostrar más [+] Menos [-]Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage
2021
Hou, Dandi | Hong, Man | Wang, Kai | Yan, Huizhen | Wang, Yanting | Dong, Pengsheng | Li, Daoji | Liu, Kai | Zhou, Zhiqiang | Zhang, Demin
Microplastics have emerged as a new anthropogenic substrate that can readily be colonized by microorganisms. Nevertheless, microbial community succession and assembly among different microplastics in nearshore mariculture cages remains poorly understood. Using an in situ incubation experiment, 16S rRNA gene amplicon sequencing, and the neutral model, we investigated the prokaryotic communities attached to polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) in a mariculture cage in Xiangshan Harbor, China. The α-diversities and compositions of microplastic-attached prokaryotic communities were significantly distinct from free-living and small particle-attached communities in the surrounding water but relatively similar to the large particle-attached communities. Although a distinct prokaryotic community was developed on each type of microplastic, the communities on PE and PP more closely resembled each other. Furthermore, the prokaryotic community dissimilarity among all media (microplastics and water fractions) tended to decrease over time. Hydrocarbon-degrading bacteria Alcanivorax preferentially colonized PE, and the genus Vibrio with opportunistically pathogenic members has the potential to colonize PET. Additionally, neutral processes dominated the prokaryotic community assembly on PE and PP, while selection was more responsible for the prokaryotic assembly on PET. The assembly of Planctomycetaceae and Thaumarchaeota Marine Group I taxa on three microplastics were mainly governed by selection and neutral processes, respectively. Our study provides further understanding of microplastic-associated microbial ecology in mariculture environments.
Mostrar más [+] Menos [-]Ciliates as bioindicators of water quality: A case study in the neotropical region and evidence of phylogenetic signals (18S-rDNA)
2021
Dias, Roberto Júnio Pedroso | de Souza, Pedro Mendes | Rossi, Mariana Fonseca | Wieloch, Alfredo Hannemann | da Silva-Neto, Inácio Domingos | D’Agosto, Marta
The aim of our study was to evaluate the water quality of an urban stream in southeastern Brazil by analyzing epibenthic ciliates, and to investigate the existence of phylogenetic signal for saprobity in ciliates. However, before conducting this type of phylogenetic study, it is necessary to evaluate if the saprobic classification used frequently in the northern Hemisphere is suitable for neotropical ecosystems. Sediment samples were collected from five sampling stations: two in rural areas and three in urban areas. During the one-year study, with monthly collections, 39 ciliates species were found, of which 32 are included in the saprobic system. Physical, chemical and biological parameters of water confirm the spatial heterogeneity of the sampling stations, with a clear influence of organic pollution on the composition and structure of ciliates taxocenosis. The saprobic index and the saprobic valence index were used to evaluate the water quality of the sampling stations and demonstrated clear heterogeneity between the stations and high degree of pollution of the urban area. These sampling stations were dominated by ciliates indicators of polysaprobric environments. Since we were able to successfully use the saprobic index in a limnic ecosystem in Brazil, we applied the phylogenetic signal validation as a tool for saprobity prediction of the limnic ciliate species not yet analyzed. A phylogenetic tree containing only 18S-rDNA nominal sequences of freshwater ciliates was estimated and used to explore the existence of the phylogenetic signal, which showed that the sensitivity/tolerance of ciliates to organic pollution reflected evolutionary divergence. The results confirm the existence of phylogenetic signal for the saprobrity in Ciliophora. Also, our results suggest that evolutionary analysis is a potential method to predict lineages of ciliates not yet classified for saprobity.
Mostrar más [+] Menos [-]Metal lability and environmental risk in anthropogenically disturbed Antarctic melt streams
2021
Koppel, Darren J. | Bishop, Jordan | Kopalová, Kateřina | Price, Gwilym A.V. | Brown, Kathryn E. | Adams, Merrin S. | King, Catherine K. | Jolley, Dianne F.
Antarctic melt streams are important ecosystems that increasingly face contaminant pressures from anthropogenic sources. Metal contaminants are often reported in the limno-terrestrial environment but their speciation is not well characterised, making environmental risk assessments difficult. This paper characterises labile metal concentrations in five melt streams and three shallow lakes around the Casey and Wilkes research stations in East Antarctica using chemical extracts and field deployments of diffusive gradients in thin-film (DGT) samplers. An acute toxicity test with field-collected Ceratadon purpeus and taxonomic identification of diatoms in melt streams were used to infer environmental risk. Copper and zinc were the most labile metals in the melt streams. DGT-labile copper concentrations were up to 3 μg Cu L⁻¹ in melt-stream waters but not labile below the sediment-water interface. DGT-labile zinc concentrations were consistent above and below the sediment-water interface at concentrations up to 14 μg Zn L⁻¹ in four streams, but one stream showed evidence of zinc mineralisation in the sediment with a flux to overlying and pore waters attributed to the reductive dissolution of iron and manganese oxides. Other metals, such as chromium, nickel, and lead were acid-extractable from the sediments, but not labile in pore waters or overlying waters. All streams had unique compositions of freshwater diatoms, but one had particularly reduced diversity and richness, which correlated to metal contamination and sediment physico-chemical properties such as a finer particle size. In laboratory bioassays with field-collected samples of the Antarctic moss C. purpeus, there was no change in photosynthetic efficiency following 28-d exposure to 700, 900, 1060, or 530 μg L⁻¹ of cadmium, copper, nickel, and zinc, respectively. This study shows that microorganisms such as diatoms may be at greater risk from contaminants than mosses, and highlights the importance of geochemical factors controlling metal lability.
Mostrar más [+] Menos [-]Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country
2021
Rodríguez, Erika A. | Ramirez, Diego | Balcázar, José L. | Jiménez, J Natalia
In developing countries, where high levels of antimicrobial resistance are observed in hospitals, the surveillance of this phenomenon in wastewater treatment plants (WWTPs) and the environment is very limited, especially using cutting-edge culture-independent methods. In this study, the composition of bacterial communities, the resistome and mobilome (the pool of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), respectively) at a WWTP were determined using shotgun metagenomics and culture-based approaches. Wastewater samples were collected at four sampling points of a WWTP in Antioquia, Colombia. A total of 24 metagenomes were analyzed. Specifically, there were marked differences in bacterial community composition, resistome, and mobilome, according to the WWTP sampling points. Bacterial families of clinical importance such as Moraxellaceae, Aeromonadaceae, and Enterobacteriaceae were mainly detected in the WWTP influent and effluent samples. Genes encoding resistance to macrolide-lincosamide-streptogramin, β-lactams, and those conferring multidrug resistance (e.g., acrB, adeG, and mexD) were the most abundant. Moreover, some clinically important ARGs such as blaKPC₋₂ and blaCTX₋M, and others not reported locally, such as blaTEM₋₁₉₆, blaGES₋₂₃, blaOXA₋₁₀, mcr-3, and mcr-5 were frequently detected. Co-occurrence network analyses indicated a significant association of ARGs such as blaOXA₋₅₈ and blaKPC genes with Aeromonadaceae and Enterobacteriaceae. Among the markers of MGEs, intI1 and ISCR8 were the most frequently detected. Altogether, this work reveals the importance of shotgun metagenomics and culture-based approaches in antimicrobial resistance studies. The findings also support that WWTPs are hotspots for antimicrobial resistance, whose analysis constitutes a powerful tool to predict the impact of antimicrobial resistance in a population.
Mostrar más [+] Menos [-]Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water
2021
Frankowski, Robert | Płatkiewicz, Julia | Stanisz, Ewa | Grześkowiak, Tomasz | Zgoła-Grześkowiak, Agnieszka
Bisphenol A, bisphenol S, and fluconazole are ubiquitous environmental pollutants and their removal from water is of utmost importance. As the biodegradation of these compounds is usually not enough effective, often other degradation methods are required. The study presents the difference between biodegradation and photo-Fenton degradation with a much higher efficiency obtained in the latter process. Levels of biodegradation and chemical degradation were assessed based on high-performance liquid chromatography determination. Optimization of the photo-Fenton removal of bisphenol A, bisphenol S, and fluconazole resulted in about 100 % primary degradation of both bisphenols during 10–20 min and almost 90 % primary degradation of fluconazole within an hour. Degradation products formed in the process were identified using liquid chromatography with mass spectrometry and showed central scission of bisphenol S with the formation of phenol and sulfuric acid while for bisphenol A and fluconazole the oxidation resulted in much smaller structural changes.
Mostrar más [+] Menos [-]Efficient anaerobic bioremediation of high-concentration benzo[a]pyrene in marine environments
2021
Leng, Qingxue | Mu, Jun | Yang, Guangfeng
Benzo[a]pyrene (BaP), a persistent organic pollutant that may accumulate in sea sediments after oil spill or BaP chemical leakage accidents, considerably harms marine ecosystems and human health. Previous studies have been predominantly focused on its degradation at low concentrations, while the remediation of BaP pollution with high concentrations was neglected. Additionally, the metabolic pathways associated with its anaerobic degradation remain unclear. As a first attempt, super-efficient systems for BaP anaerobic degradation were established, and the corresponding metabolic pathways were elucidated in this study. The results showed that the BaP removal rate in BaP-only system with initial concentrations of 200 mg/L reached 3.09 mg/(L·d) within 45 days. Co-solvent, acetone promoted anaerobic BaP degradation (4.252 mg/(L·d)), while dichloromethane showed a newly-discovered co-metabolic effect. In the system with 500 mg/L of BaP and dichloromethane addition, the removal rate increased drastically (14.64 mg/(L·d)) at 400 mg/L turn point of BaP. Additionally, the corresponding microbial community-level metabolic network was firstly proposed.
Mostrar más [+] Menos [-]Source identification of atmospheric particle-bound mercury in the Himalayan foothills through non-isotopic and isotope analyses
2021
Guo, Junming | Sharma, Chhatra Mani | Tripathee, Lekhendra | Kang, Shichang | Fu, Xuewu | Huang, Jie | Shrestha, Kundan Lal | Chen, Pengfei
This study reports on the sources of atmospheric particle-bound mercury (HgP) in less studied regions of Nepal based on the analysis of stable mercury (Hg) isotopes in aerosol samples from two neighboring areas with high and low anthropogenic emissions (Kathmandu and Dhulikhel, respectively) during 2018. Although the Indian monsoon and westerlies are generally regarded as the primary carriers of pollutants to this region via the heavily industrialized Indo-Gangetic Plain, the concentrations of total suspended particles (TSP) and HgP in Kathmandu were higher than those in Dhulikhel, thus suggesting a substantial contribution from local sources. Both isotopic (δ²⁰⁰Hg and Δ¹⁹⁹Hg) and non-isotopic evidence indicated that dust, waste burning, and industrial byproducts (without Hg amalgamation) were the major sources of Hg in Kathmandu during the study period. Mercury may have been transported via air masses from Kathmandu to Dhulikhel, as indicated by the similar organic carbon/elemental carbon ratios and seasonal trends of TSP and HgP in these two locations. Local anthropogenic sources were found to contribute significantly to atmospheric Hg pollution through dust resuspension. Therefore, dust resuspension should be considered when evaluating the long-range transport of air pollutants such as Hg, particularly in anthropogenically stressed areas.
Mostrar más [+] Menos [-]Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants
2021
Elumalai, Punniyakotti | Parthipan, Punniyakotti | Huang, Mingzhi | Muthukumar, Balakrishnan | Cheng, Liang | Govarthanan, Muthusamy | Rajasekar, Aruliah
Hydrocarbons and their derivative compounds are recalcitrant in nature and causing adverse impacts to the environment and are classified as important pollutants. Removal of these pollutants from the atmosphere is a challenging process. Hydrophobic organic pollutants (HOPs) including crude oil, diesel, dotriacontane (C₃₂), and tetracontane (C₄₀) are subjected to the biodegradation study by using a bacterial consortium consist of Bacillus subtilis, Pseudomonas stutzeri, and Acinetobacter baumannii. The impact of pH and temperature on the biodegradation process was monitored. During the HOPs biodegradation, the impact of hydrocarbon-degrading extracellular enzymes such as alcohol dehydrogenase, alkane hydroxylase, and lipase was examined, and found average activity about 47.2, 44.3, and 51.8 μmol/mg⁻¹, respectively. Additionally, other enzymes such as catechol 1,2 dioxygenase and catechol 2,3 dioxygenase were found as 118 and 112 μmol/mg⁻¹ Enzyme as an average range in all the HOPs degradation, respectively. Also, the impact of the extracellular polymeric substance and proteins were elucidated during the biodegradation of HOPs with the average range of 116.90, 54.98 mg/L⁻¹ respectively. The impact of biosurfactants on the degradation of different types of HOPs is elucidated. Very slight changes in the pH were also noticed during the biodegradation study. Biodegradation efficiency was calculated as 90, 84, 76, and 72% for crude oil, diesel, C₃₂, and C₄₀, respectively. Changes in the major functional groups (CH, C–O–C, CO, =CH₂, CH₂, CH₃) were confirmed by FTIR analysis and intermediated metabolites were identified by GCMS analysis. The surface-active molecules along with the enzymes played a crucial role in the biodegradation process.
Mostrar más [+] Menos [-]